Improving the Accuracy of Vegetation Index Retrieval for Biomass by Combining Ground-UAV Hyperspectral Data–A New Method for Inner Mongolia Typical Grasslands

高光谱成像 内蒙古 植被指数 生物量(生态学) 遥感 植被(病理学) 草原 环境科学 索引(排版) 叶面积指数 计算机科学 地理 归一化差异植被指数 生态学 中国 生物 医学 考古 病理 万维网
作者
Ruochen Wang,Jianjun Dong,Lishan Jin,Yuyan Sun,Taogetao Baoyin,Xiumei Wang
出处
期刊:Phyton-international Journal of Experimental Botany 卷期号:93 (2): 387-411 被引量:2
标识
DOI:10.32604/phyton.2024.047573
摘要

Grassland biomass is an important parameter of grassland ecosystems. The complexity of the grassland canopy vegetation spectrum makes the long-term assessment of grassland growth a challenge. Few studies have explored the original spectral information of typical grasslands in Inner Mongolia and examined the influence of spectral information on aboveground biomass (AGB) estimation. In order to improve the accuracy of vegetation index inversion of grassland AGB, this study combined ground and Unmanned Aerial Vehicle (UAV) remote sensing technology and screened sensitive bands through ground hyperspectral data transformation and correlation analysis. The narrow band vegetation indices were calculated, and ground and airborne hyperspectral inversion models were established. Finally, the accuracy of the model was verified. The results showed that: (1) The vegetation indices constructed based on the ASD FieldSpec 4 and the UAV were significantly correlated with the dry and fresh weight of AGB. (2) The comparison between measured R2 with the prediction R2 indicated that the accuracy of the model was the best when using the Soil-Adjusted Vegetation Index (SAVI) as the independent variable in the analysis of AGB (fresh weight/dry weight) and four narrow-band vegetation indices. The SAVI vegetation index showed better applicability for biomass monitoring in typical grassland areas of Inner Mongolia. (3) The obtained ground and airborne hyperspectral data with the optimal vegetation index suggested that the dry weight of AGB has the best fitting effect with airborne hyperspectral data, where y = 17.962e4.672x, the fitting R2 was 0.542, the prediction R2 was 0.424, and RMSE and REE were 57.03 and 0.65, respectively. Therefore, established vegetation indices by screening sensitive bands through hyperspectral feature analysis can significantly improve the inversion accuracy of typical grassland biomass in Inner Mongolia. Compared with ground monitoring, airborne hyperspectral monitoring better reflects the inversion of actual surface biomass. It provides a reliable modeling framework for grassland AGB monitoring and scientific and technological support for grazing management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JJG完成签到,获得积分20
2秒前
Hello应助Tiam采纳,获得10
3秒前
3秒前
ty完成签到,获得积分10
5秒前
zehua309完成签到,获得积分10
6秒前
火星上含芙完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
掌门发布了新的文献求助10
9秒前
愉快的花卷完成签到,获得积分10
9秒前
少言完成签到,获得积分10
11秒前
kiko完成签到,获得积分10
12秒前
隐形惜筠完成签到 ,获得积分10
14秒前
黑眼圈完成签到,获得积分10
18秒前
123发布了新的文献求助10
20秒前
21秒前
22秒前
又又妈妈完成签到,获得积分10
22秒前
欢呼的丁真完成签到,获得积分10
23秒前
ty发布了新的文献求助10
23秒前
Faded完成签到 ,获得积分10
24秒前
ding应助Amorfati采纳,获得10
24秒前
好好学习天天向上完成签到,获得积分10
25秒前
所所应助lh采纳,获得10
26秒前
李爱国应助深情丸子采纳,获得10
26秒前
烟花应助阿湫采纳,获得10
26秒前
26秒前
乌梅不乌发布了新的文献求助10
27秒前
27秒前
YY完成签到,获得积分10
28秒前
29秒前
29秒前
Tiam发布了新的文献求助10
29秒前
种花家的狗狗完成签到,获得积分10
29秒前
wisdom完成签到,获得积分10
29秒前
123完成签到,获得积分10
30秒前
温暖芸完成签到,获得积分10
30秒前
31秒前
认真的觅松完成签到 ,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048