Improving the Accuracy of Vegetation Index Retrieval for Biomass by Combining Ground-UAV Hyperspectral Data–A New Method for Inner Mongolia Typical Grasslands

高光谱成像 内蒙古 植被指数 生物量(生态学) 遥感 植被(病理学) 草原 环境科学 索引(排版) 叶面积指数 计算机科学 地理 归一化差异植被指数 生态学 中国 生物 医学 考古 病理 万维网
作者
Ruochen Wang,Jianjun Dong,Lishan Jin,Yuyan Sun,Taogetao Baoyin,Xiumei Wang
出处
期刊:Phyton-international Journal of Experimental Botany 卷期号:93 (2): 387-411 被引量:2
标识
DOI:10.32604/phyton.2024.047573
摘要

Grassland biomass is an important parameter of grassland ecosystems. The complexity of the grassland canopy vegetation spectrum makes the long-term assessment of grassland growth a challenge. Few studies have explored the original spectral information of typical grasslands in Inner Mongolia and examined the influence of spectral information on aboveground biomass (AGB) estimation. In order to improve the accuracy of vegetation index inversion of grassland AGB, this study combined ground and Unmanned Aerial Vehicle (UAV) remote sensing technology and screened sensitive bands through ground hyperspectral data transformation and correlation analysis. The narrow band vegetation indices were calculated, and ground and airborne hyperspectral inversion models were established. Finally, the accuracy of the model was verified. The results showed that: (1) The vegetation indices constructed based on the ASD FieldSpec 4 and the UAV were significantly correlated with the dry and fresh weight of AGB. (2) The comparison between measured R2 with the prediction R2 indicated that the accuracy of the model was the best when using the Soil-Adjusted Vegetation Index (SAVI) as the independent variable in the analysis of AGB (fresh weight/dry weight) and four narrow-band vegetation indices. The SAVI vegetation index showed better applicability for biomass monitoring in typical grassland areas of Inner Mongolia. (3) The obtained ground and airborne hyperspectral data with the optimal vegetation index suggested that the dry weight of AGB has the best fitting effect with airborne hyperspectral data, where y = 17.962e4.672x, the fitting R2 was 0.542, the prediction R2 was 0.424, and RMSE and REE were 57.03 and 0.65, respectively. Therefore, established vegetation indices by screening sensitive bands through hyperspectral feature analysis can significantly improve the inversion accuracy of typical grassland biomass in Inner Mongolia. Compared with ground monitoring, airborne hyperspectral monitoring better reflects the inversion of actual surface biomass. It provides a reliable modeling framework for grassland AGB monitoring and scientific and technological support for grazing management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heiner发布了新的文献求助30
刚刚
HH完成签到,获得积分10
1秒前
1秒前
搜集达人应助美丽心情采纳,获得10
1秒前
2秒前
fukesi完成签到,获得积分10
2秒前
WTC完成签到 ,获得积分10
2秒前
Orange应助旷野采纳,获得10
2秒前
yanxuhuan完成签到 ,获得积分10
2秒前
yan123发布了新的文献求助10
3秒前
方便面条子完成签到 ,获得积分10
3秒前
3秒前
zzz发布了新的文献求助10
4秒前
4秒前
烂漫臻发布了新的文献求助10
4秒前
小肥吴发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
Ava应助sujustin333采纳,获得10
6秒前
heiner完成签到,获得积分10
6秒前
7秒前
7秒前
牧觅云发布了新的文献求助10
7秒前
7秒前
爱吃冻梨发布了新的文献求助20
7秒前
Mississippiecho完成签到,获得积分10
7秒前
852应助路途遥远采纳,获得10
8秒前
rd完成签到 ,获得积分10
9秒前
852应助含糊的凝芙采纳,获得10
9秒前
认真飞瑶发布了新的文献求助10
9秒前
Steven发布了新的文献求助10
10秒前
jjj应助玩命的猕猴桃采纳,获得20
10秒前
slp发布了新的文献求助10
10秒前
司空晓山发布了新的文献求助30
10秒前
dd完成签到,获得积分10
10秒前
10秒前
what发布了新的文献求助10
11秒前
小马甲应助Tina采纳,获得10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836