Improving the Accuracy of Vegetation Index Retrieval for Biomass by Combining Ground-UAV Hyperspectral Data–A New Method for Inner Mongolia Typical Grasslands

高光谱成像 内蒙古 植被指数 生物量(生态学) 遥感 植被(病理学) 草原 环境科学 索引(排版) 叶面积指数 计算机科学 地理 归一化差异植被指数 生态学 中国 生物 医学 考古 病理 万维网
作者
Ruochen Wang,Jianjun Dong,Lishan Jin,Yuyan Sun,Taogetao Baoyin,Xiumei Wang
出处
期刊:Phyton-international Journal of Experimental Botany 卷期号:93 (2): 387-411
标识
DOI:10.32604/phyton.2024.047573
摘要

Grassland biomass is an important parameter of grassland ecosystems. The complexity of the grassland canopy vegetation spectrum makes the long-term assessment of grassland growth a challenge. Few studies have explored the original spectral information of typical grasslands in Inner Mongolia and examined the influence of spectral information on aboveground biomass (AGB) estimation. In order to improve the accuracy of vegetation index inversion of grassland AGB, this study combined ground and Unmanned Aerial Vehicle (UAV) remote sensing technology and screened sensitive bands through ground hyperspectral data transformation and correlation analysis. The narrow band vegetation indices were calculated, and ground and airborne hyperspectral inversion models were established. Finally, the accuracy of the model was verified. The results showed that: (1) The vegetation indices constructed based on the ASD FieldSpec 4 and the UAV were significantly correlated with the dry and fresh weight of AGB. (2) The comparison between measured R2 with the prediction R2 indicated that the accuracy of the model was the best when using the Soil-Adjusted Vegetation Index (SAVI) as the independent variable in the analysis of AGB (fresh weight/dry weight) and four narrow-band vegetation indices. The SAVI vegetation index showed better applicability for biomass monitoring in typical grassland areas of Inner Mongolia. (3) The obtained ground and airborne hyperspectral data with the optimal vegetation index suggested that the dry weight of AGB has the best fitting effect with airborne hyperspectral data, where y = 17.962e4.672x, the fitting R2 was 0.542, the prediction R2 was 0.424, and RMSE and REE were 57.03 and 0.65, respectively. Therefore, established vegetation indices by screening sensitive bands through hyperspectral feature analysis can significantly improve the inversion accuracy of typical grassland biomass in Inner Mongolia. Compared with ground monitoring, airborne hyperspectral monitoring better reflects the inversion of actual surface biomass. It provides a reliable modeling framework for grassland AGB monitoring and scientific and technological support for grazing management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
霸气的思柔完成签到,获得积分10
1秒前
Jasper应助merrylake采纳,获得30
1秒前
asd发布了新的文献求助10
1秒前
nanjiren完成签到,获得积分10
2秒前
2秒前
科目三应助sssss采纳,获得30
3秒前
帅气的白秋完成签到,获得积分10
3秒前
丫丫完成签到,获得积分10
4秒前
5秒前
小胡崽崽吖应助典雅的静采纳,获得10
6秒前
6秒前
6秒前
6秒前
林林完成签到,获得积分10
6秒前
sushx完成签到,获得积分10
7秒前
7秒前
keyaner完成签到,获得积分10
8秒前
渊思发布了新的文献求助10
8秒前
整齐的一手完成签到,获得积分10
8秒前
8秒前
三盒半熟芝士完成签到,获得积分10
9秒前
9秒前
所所应助pipi采纳,获得10
9秒前
活力元冬发布了新的文献求助10
9秒前
NagatoYuki完成签到,获得积分10
9秒前
LHQ发布了新的文献求助10
10秒前
langwang完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
1111完成签到,获得积分10
11秒前
bao发布了新的文献求助15
11秒前
12秒前
星际舟发布了新的文献求助10
12秒前
Lcrainy发布了新的文献求助10
13秒前
青易完成签到,获得积分10
14秒前
14秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327147
求助须知:如何正确求助?哪些是违规求助? 2957498
关于积分的说明 8585810
捐赠科研通 2635547
什么是DOI,文献DOI怎么找? 1442472
科研通“疑难数据库(出版商)”最低求助积分说明 668298
邀请新用户注册赠送积分活动 655221