Artificial Intelligence Teaching as Part of Medical Education: Qualitative Analysis of Expert Interviews

课程 背景(考古学) 定性研究 内容分析 医学教育 主题(文档) 医疗保健 指南 心理学 工程伦理学 知识管理 医学 计算机科学 教育学 社会科学 社会学 工程类 病理 古生物学 图书馆学 经济 生物 经济增长
作者
Lukas Weidener,Michael Fischer
出处
期刊:JMIR medical education [JMIR Publications Inc.]
卷期号:9: e46428-e46428 被引量:24
标识
DOI:10.2196/46428
摘要

The use of artificial intelligence (AI) in medicine is expected to increase significantly in the upcoming years. Advancements in AI technology have the potential to revolutionize health care, from aiding in the diagnosis of certain diseases to helping with treatment decisions. Current literature suggests the integration of the subject of AI in medicine as part of the medical curriculum to prepare medical students for the opportunities and challenges related to the use of the technology within the clinical context.We aimed to explore the relevant knowledge and understanding of the subject of AI in medicine and specify curricula teaching content within medical education.For this research, we conducted 12 guideline-based expert interviews. Experts were defined as individuals who have been engaged in full-time academic research, development, or teaching in the field of AI in medicine for at least 5 years. As part of the data analysis, we recorded, transcribed, and analyzed the interviews using qualitative content analysis. We used the software QCAmap and inductive category formation to analyze the data.The qualitative content analysis led to the formation of three main categories ("Knowledge," "Interpretation," and "Application") with a total of 9 associated subcategories. The experts interviewed cited knowledge and an understanding of the fundamentals of AI, statistics, ethics, and privacy and regulation as necessary basic knowledge that should be part of medical education. The analysis also showed that medical students need to be able to interpret as well as critically reflect on the results provided by AI, taking into account the associated risks and data basis. To enable the application of AI in medicine, medical education should promote the acquisition of practical skills, including the need for basic technological skills, as well as the development of confidence in the technology and one's related competencies.The analyzed expert interviews' results suggest that medical curricula should include the topic of AI in medicine to develop the knowledge, understanding, and confidence needed to use AI in the clinical context. The results further imply an imminent need for standardization of the definition of AI as the foundation to identify, define, and teach respective content on AI within medical curricula.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助你好吗采纳,获得10
刚刚
科研通AI2S应助沉默哈密瓜采纳,获得10
1秒前
Lucas应助别让我误会采纳,获得10
1秒前
花痴的梦蕊完成签到,获得积分10
3秒前
4秒前
狐狸萌萌哒完成签到 ,获得积分10
5秒前
欢呼凡英完成签到,获得积分10
5秒前
6秒前
ora4ks发布了新的文献求助10
6秒前
Kahar发布了新的文献求助10
6秒前
7秒前
10秒前
余儿发布了新的文献求助10
11秒前
自然的小珍应助ruuuu采纳,获得10
12秒前
13秒前
黄黄完成签到,获得积分0
13秒前
13秒前
李博士完成签到,获得积分20
13秒前
你好吗完成签到,获得积分10
14秒前
14秒前
14秒前
Arjun应助易达采纳,获得30
16秒前
星辰大海应助Sir.夏季风采纳,获得10
16秒前
17秒前
yyl完成签到 ,获得积分10
17秒前
你好吗发布了新的文献求助10
18秒前
吴彦祖发布了新的文献求助10
18秒前
19秒前
修仙应助科研通管家采纳,获得10
19秒前
cscs111110应助科研通管家采纳,获得30
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
聪仔应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
arcval完成签到 ,获得积分10
19秒前
修仙应助科研通管家采纳,获得10
20秒前
mengxue完成签到,获得积分10
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244306
求助须知:如何正确求助?哪些是违规求助? 2888006
关于积分的说明 8250968
捐赠科研通 2556504
什么是DOI,文献DOI怎么找? 1384832
科研通“疑难数据库(出版商)”最低求助积分说明 649943
邀请新用户注册赠送积分活动 626036