A review of deep learning and radiomics approaches for pancreatic cancer diagnosis from medical imaging

胰腺癌 深度学习 卷积神经网络 医学影像学 无线电技术 人工智能 医学 磁共振成像 分割 机器学习 计算机科学 医学物理学 癌症 放射科 内科学
作者
Yao Li,Zheyuan Zhang,Elif Keleş,Cemal Yazıcı,Temel Tirkes,Ulaş Bağcı
出处
期刊:Current Opinion in Gastroenterology [Ovid Technologies (Wolters Kluwer)]
卷期号:39 (5): 436-447 被引量:4
标识
DOI:10.1097/mog.0000000000000966
摘要

Early and accurate diagnosis of pancreatic cancer is crucial for improving patient outcomes, and artificial intelligence (AI) algorithms have the potential to play a vital role in computer-aided diagnosis of pancreatic cancer. In this review, we aim to provide the latest and relevant advances in AI, specifically deep learning (DL) and radiomics approaches, for pancreatic cancer diagnosis using cross-sectional imaging examinations such as computed tomography (CT) and magnetic resonance imaging (MRI).This review highlights the recent developments in DL techniques applied to medical imaging, including convolutional neural networks (CNNs), transformer-based models, and novel deep learning architectures that focus on multitype pancreatic lesions, multiorgan and multitumor segmentation, as well as incorporating auxiliary information. We also discuss advancements in radiomics, such as improved imaging feature extraction, optimized machine learning classifiers and integration with clinical data. Furthermore, we explore implementing AI-based clinical decision support systems for pancreatic cancer diagnosis using medical imaging in practical settings.Deep learning and radiomics with medical imaging have demonstrated strong potential to improve diagnostic accuracy of pancreatic cancer, facilitate personalized treatment planning, and identify prognostic and predictive biomarkers. However, challenges remain in translating research findings into clinical practice. More studies are required focusing on refining these methods, addressing significant limitations, and developing integrative approaches for data analysis to further advance the field of pancreatic cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小思完成签到 ,获得积分10
1秒前
米线ing完成签到,获得积分10
1秒前
Tiako完成签到,获得积分10
1秒前
yue关注了科研通微信公众号
1秒前
善良的翼发布了新的文献求助10
1秒前
Mini_Bread完成签到,获得积分10
1秒前
朵啦诶萌完成签到,获得积分10
1秒前
Wu发布了新的文献求助10
2秒前
3秒前
4秒前
勤恳凌丝关注了科研通微信公众号
5秒前
沈斌发布了新的文献求助10
5秒前
尾巴完成签到,获得积分10
6秒前
7秒前
灵巧的以亦完成签到,获得积分10
7秒前
科研通AI2S应助专注的语堂采纳,获得10
7秒前
阔达的寄灵完成签到,获得积分20
7秒前
genomed应助LJL采纳,获得10
8秒前
9秒前
寒冷寒安关注了科研通微信公众号
9秒前
qyy关闭了qyy文献求助
9秒前
10秒前
Blade完成签到,获得积分10
10秒前
米奇完成签到,获得积分10
11秒前
四斤瓜发布了新的文献求助10
12秒前
12秒前
Carmen发布了新的文献求助30
12秒前
小酒馆完成签到,获得积分10
12秒前
15秒前
叶不寿完成签到,获得积分10
15秒前
15秒前
迷路德地完成签到,获得积分20
16秒前
FashionBoy应助丁浩采纳,获得10
19秒前
19秒前
神勇的薯片完成签到,获得积分10
19秒前
顾矜应助叶不寿采纳,获得10
21秒前
orixero应助善良的翼采纳,获得10
22秒前
大方无心发布了新的文献求助30
24秒前
犹豫的铸海完成签到,获得积分10
25秒前
王晓静发布了新的文献求助40
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226