吸入染毒
粒径
吸入
暴露评估
吸收(声学)
药代动力学
化学
人类健康
健康风险
环境化学
材料科学
环境科学
毒性
医学
环境卫生
药理学
有机化学
复合材料
物理化学
解剖
作者
Huiju Lin,Xinxing Li,Xian Qin,Yaru Cao,Yuefei Ruan,Michael K.H. Leung,Kmy Leung,Paul K.S. Lam,Yuhe He
标识
DOI:10.1016/j.scitotenv.2023.168328
摘要
In indoor environments, liquid crystal monomers (LCMs) released from display devices is a significant concern, necessitating a comprehensive investigation into their distribution behaviors and potential health risks. Herein, we examined various LCMs in educational and workplace air and compared their associated health risks through inhalation and dermal absorption routes. 4-propyl-4′-vinylbicyclohexyl (3VbcH) and 4,4′-bis(4-propylcyclohexyl) biphenyl (b3CHB) with median concentrations of 101 and 1460 pg m−3, were the predominant LCMs in gaseous and particulate phases, respectively. Composition and concentration of LCMs differed substantially between sampling locations due to the discrepancy in the quantity, types, and brands of electronic devices in each location. Three models were further employed to estimate the gas−particle partitioning of LCMs and compared with the measured data. The results indicated that the HB model exhibited the best overall performance, while the LMY model provided a good fit for LCMs with higher log Koa (>12.48). Monte Carlo simulation was used to estimate and compared the probabilistic daily exposure dose and potential health risks. Inhalation exposure of LCMs was significantly greater than the dermal absorption by approximately 1–2 orders of magnitude, implying that it was the primary exposure route of human exposure to airborne LCMs. However, certain LCMs exhibited comparable or higher exposure levels via the dermal absorption route due to the significant overall permeability coefficient. Furthermore, the particle size was discovered to impact the daily exposure dose, contingent on the particle mass-transfer coefficients and accumulation of LCMs on diverse particle sizes. Although the probabilistic non-carcinogenic risks of LCMs were relatively low, their chronic effects on human beings merit further investigations. Overall, this study provides insights into the contamination and potential health risks of LCMs in indoor environments, underscoring the importance of considering particle sizes and all possible exposure pathways in estimating human health risks caused by airborne organic contaminants.
科研通智能强力驱动
Strongly Powered by AbleSci AI