In situ doping of lithium iron phosphate with excellent water-soluble zinc salt was used to improve its magnification performance

材料科学 电化学 兴奋剂 磷酸铁锂 电导率 循环伏安法 锂(药物) 分析化学(期刊) 介电谱 电极 化学工程 化学 冶金 色谱法 光电子学 医学 工程类 内分泌学 物理化学
作者
Chengyu Pan,Hao‐Yan Yin,Feng Pan,Xinyue He,Wantong Jiang,Wei Yi,Yuqiang Zhai,Bowen Li,Yanmin Gao
出处
期刊:Solid State Ionics [Elsevier]
卷期号:403: 116404-116404 被引量:1
标识
DOI:10.1016/j.ssi.2023.116404
摘要

It has always been an important research direction for improving the intrinsic conductivity of Lithium iron phosphate materials. Doping can not only improve the intrinsic conductivity but also induce lattice distortion to increase the diffusion rate of lithium ions to improve the electrochemical performance. Zn-doped LiFe1-xZnxPO4 (x = 0, 0.025, 0.05, 0.075) is prepared from LiOH·H2O, FeSO4·7H2O, H3PO4, ZnSO4·7H2O. The composition, structure, morphology and electrochemical performance of the material are characterized in detail by XRD, SEM, EDS, cyclic voltammetry test, AC impedance test and other methods. The results show that the nano-spherical LiFe0.075Zn0.025PO4 exhibits excellent capacity performance and rate performance without intentionally coating C. The initial discharge specific capacity of the positive electrode material is 153.6 mAh·g−1 at 0.2C. The material also exhibits excellent cycle performance, with a discharge-specific capacity of 148.6mAh g−1 and a capacity retention rate of 96.7% after 100 cycles at a current density of 0.2C. Compared with the undoped samples, the doped ZnSO4 improves the actual capacitance of the samples. The high specific capacity retention rate at large rate charge-discharge indicates that zinc doping improves the structural stability of the samples. The crystal structure is not significantly damaged during the large current charge discharge process, and the magnification performance is improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨合霖发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
2秒前
马嘉懿完成签到 ,获得积分10
4秒前
lili发布了新的文献求助10
4秒前
4秒前
自由的笑完成签到,获得积分10
4秒前
LLxiaolong完成签到,获得积分10
4秒前
xxxxxxx发布了新的文献求助10
4秒前
金jin发布了新的文献求助10
6秒前
zssl完成签到,获得积分10
6秒前
酷酷剑通发布了新的文献求助10
6秒前
上官若男应助ark861023采纳,获得10
7秒前
yangyajie发布了新的文献求助10
7秒前
gmc发布了新的文献求助10
7秒前
端端发布了新的文献求助10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
8秒前
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
8秒前
123HJJJKJJKJK应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
Jasper应助guogangyouming采纳,获得10
8秒前
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559249
求助须知:如何正确求助?哪些是违规求助? 3133915
关于积分的说明 9404473
捐赠科研通 2834019
什么是DOI,文献DOI怎么找? 1557787
邀请新用户注册赠送积分活动 727686
科研通“疑难数据库(出版商)”最低求助积分说明 716399