清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Cyclic Transfer Learning for Mandarin-English Code-Switching Speech Recognition

符号 普通话 计算机科学 人工智能 编码(集合论) 自然语言处理 语音识别 程序设计语言 数学 算术 语言学 哲学 集合(抽象数据类型)
作者
Cao Hong Nga,Duc-Quang Vu,Huong Hoang Luong,Chien-Lin Huang,Jia‐Ching Wang
出处
期刊:IEEE Signal Processing Letters [Institute of Electrical and Electronics Engineers]
卷期号:30: 1387-1391 被引量:2
标识
DOI:10.1109/lsp.2023.3307350
摘要

Transfer learning is a common method to improve the performance of the model on a target task via pre-training the model on pretext tasks. Different from the methods using monolingual corpora for pre-training, in this study, we propose a Cyclic Transfer Learning method (CTL) that utilizes both code-switching (CS) and monolingual speech resources as the pretext tasks. Moreover, the model in our approach is always alternately learned among these tasks. This helps our model can improve its performance via maintaining CS features during transferring knowledge. The experiment results on the standard SEAME Mandarin-English CS corpus have shown that our proposed CTL approach achieves the best performance with Mixed Error Rate (MER) of 16.3% on test $_{man}$ , 24.1% on test $_{sge}$ . In comparison to the baseline model that was pre-trained with monolingual data, our CTL method achieves 11.4% and 8.7% relative MER reduction on the test $_{man}$ and test $_{sge}$ sets, respectively. Besides, the CTL approach also outperforms compared to other state-of-the-art methods. The source code of the CTL method can be found at https://github.com/caohongnga/CTL-CSSR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lny发布了新的文献求助20
3秒前
孟寐以求完成签到 ,获得积分10
8秒前
1111完成签到 ,获得积分10
11秒前
su完成签到 ,获得积分0
13秒前
wBw完成签到,获得积分0
14秒前
耍酷寻双完成签到 ,获得积分10
23秒前
善良的蛋挞完成签到,获得积分10
24秒前
FFFFFF完成签到 ,获得积分10
26秒前
Moonchild完成签到 ,获得积分10
27秒前
陈M雯完成签到 ,获得积分10
29秒前
33秒前
枯叶蝶完成签到 ,获得积分10
39秒前
上官若男应助洋洋采纳,获得10
42秒前
Judy完成签到 ,获得积分0
43秒前
鱼儿游完成签到 ,获得积分10
44秒前
迷你的夜天完成签到 ,获得积分10
45秒前
感性的俊驰完成签到 ,获得积分10
50秒前
wr781586完成签到 ,获得积分10
50秒前
eyu完成签到,获得积分10
52秒前
airtermis完成签到 ,获得积分10
55秒前
eeeeeeenzyme完成签到 ,获得积分10
59秒前
1分钟前
缥缈的闭月完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
xiaosui完成签到 ,获得积分10
1分钟前
mumu发布了新的文献求助10
1分钟前
洋洋完成签到,获得积分10
1分钟前
166完成签到 ,获得积分10
1分钟前
tianshanfeihe完成签到 ,获得积分10
1分钟前
hcsdgf完成签到 ,获得积分10
1分钟前
qiqiqiqiqi完成签到 ,获得积分10
1分钟前
烟花应助风中的棒棒糖采纳,获得10
1分钟前
光亮白羊完成签到 ,获得积分10
1分钟前
chenmeimei2012完成签到 ,获得积分10
1分钟前
YZ完成签到 ,获得积分10
1分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
1分钟前
knight7m完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612892
求助须知:如何正确求助?哪些是违规求助? 4017940
关于积分的说明 12436878
捐赠科研通 3700243
什么是DOI,文献DOI怎么找? 2040634
邀请新用户注册赠送积分活动 1073400
科研通“疑难数据库(出版商)”最低求助积分说明 957029