Effects of iron homeostasis on epigenetic age acceleration: a two-sample Mendelian randomization study

孟德尔随机化 表观遗传学 转铁蛋白饱和度 生物 生物信息学 DNA甲基化 转铁蛋白 铁稳态 医学 遗传学 内科学 缺铁 基因 基因表达 基因型 贫血 遗传变异
作者
Lei Wang,Yi Liu,Shuxin Zhang,Yunbo Yuan,Siliang Chen,Wenhao Li,Mingrong Zuo,Yuting Xiang,Tengfei Li,Wanchun Yang,Yadong Yuan,Qing Liu
出处
期刊:Clinical Epigenetics [Springer Nature]
卷期号:15 (1) 被引量:2
标识
DOI:10.1186/s13148-023-01575-w
摘要

Abstract Background Epigenetic clocks constructed from DNA methylation patterns have emerged as excellent predictors of aging and aging-related health outcomes. Iron, a crucial element, is meticulously regulated within organisms, a phenomenon referred as iron homeostasis. Previous researches have demonstrated the sophisticated connection between aging and iron homeostasis. However, their causal relationship remains relatively unexplored. Results Through two-sample Mendelian randomization (MR) utilizing the random effect inverse variance weighted (IVW) method, each standard deviation (SD) increase in serum iron was associated with increased GrimAge acceleration (GrimAA, Beta IVW = 0.27, P = 8.54E−03 in 2014 datasets; Beta IVW = 0.31, P = 1.25E−02 in 2021 datasets), HannumAge acceleration (HannumAA, Beta IVW = 0.32, P = 4.50E−03 in 2014 datasets; Beta IVW = 0.32, P = 8.03E−03 in 2021 datasets) and Intrinsic epigenetic age acceleration (IEAA, Beta IVW = 0.34, P = 5.33E−04 in 2014 datasets; Beta IVW = 0.49, P = 9.94E−04 in 2021 datasets). Similar results were also observed in transferrin saturation. While transferrin manifested a negative association with epigenetic age accelerations (EAAs) sensitivity analyses. Besides, lack of solid evidence to support a causal relationship from EAAs to iron-related biomarkers. Conclusions The results of present investigation unveiled the causality of iron overload on acceleration of epigenetic clocks. Researches are warranted to illuminate the underlying mechanisms and formulate strategies for potential interventions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WIND-CUTTER完成签到,获得积分10
刚刚
椰椰豆沙发布了新的文献求助10
刚刚
刚刚
1秒前
酷酷发布了新的文献求助10
1秒前
sunrise完成签到,获得积分10
1秒前
1秒前
1秒前
spinor完成签到,获得积分10
1秒前
小小K发布了新的文献求助10
1秒前
kiwi发布了新的文献求助10
1秒前
srryw完成签到,获得积分10
2秒前
3秒前
3秒前
福尔摩琪完成签到,获得积分10
3秒前
1111111111发布了新的文献求助10
3秒前
JamesPei应助欧阳铭采纳,获得10
3秒前
CCC发布了新的文献求助10
3秒前
勤奋紫易发布了新的文献求助10
3秒前
慕青应助yanzi采纳,获得20
3秒前
4秒前
PYR完成签到,获得积分20
4秒前
xiaoxiaoxiao发布了新的文献求助10
4秒前
4秒前
5秒前
wzm完成签到,获得积分10
5秒前
Wqhao发布了新的文献求助10
5秒前
spinor发布了新的文献求助10
5秒前
单薄雪巧完成签到,获得积分10
5秒前
Azure完成签到,获得积分10
5秒前
afeifei完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
Khr1stINK发布了新的文献求助10
6秒前
鱼与发布了新的文献求助20
6秒前
6秒前
6秒前
搜集达人应助sunrise采纳,获得10
6秒前
7秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210