Identification of Genetic Risk Factors Based on Disease Progression Derived From Longitudinal Brain Imaging Phenotypes

表型 神经影像学 影像遗传学 计算机科学 鉴定(生物学) 疾病 计算生物学 遗传学 生物 基因 医学 病理 神经科学 植物
作者
Lei Du,Ying Zhao,Jian‐Ting Zhang,Muheng Shang,Jin Zhang,Junwei Han
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (3): 928-939 被引量:2
标识
DOI:10.1109/tmi.2023.3325380
摘要

Neurodegenerative disorders usually happen stage-by-stage rather than overnight. Thus, cross-sectional brain imaging genetic methods could be insufficient to identify genetic risk factors. Repeatedly collecting imaging data over time appears to solve the problem. But most existing imaging genetic methods only use longitudinal imaging phenotypes straightforwardly, ignoring the disease progression trajectory which might be a more stable disease signature. In this paper, we propose a novel sparse multi-task mixed-effects longitudinal imaging genetic method (SMMLING). In our model, disease progression fitting and genetic risk factors identification are conducted jointly. Specifically, SMMLING models the disease progression using longitudinal imaging phenotypes, and then associates fitted disease progression with genetic variations. The baseline status and changing rate, i.e., the intercept and slope, of the progression trajectory thus shoulder the responsibility to discover loci of interest, which would have superior and stable performance. To facilitate the interpretation and stability, we employ $\ell _{{2},{1}}$ -norm and the fused group lasso (FGL) penalty to identify loci at both the individual level and group level. SMMLING can be solved by an efficient optimization algorithm which is guaranteed to converge to the global optimum. We evaluate SMMLING on synthetic data and real longitudinal neuroimaging genetic data. Both results show that, compared to existing longitudinal methods, SMMLING can not only decrease the modeling error but also identify more accurate and relevant genetic factors. Most risk loci reported by SMMLING are missed by comparison methods, implicating its superiority in genetic risk factors identification. Consequently, SMMLING could be a promising computational method for longitudinal imaging genetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Hang发布了新的文献求助10
1秒前
最初发布了新的文献求助10
2秒前
Lesile完成签到,获得积分10
2秒前
竹筏过海应助公西翠萱采纳,获得30
2秒前
2秒前
海子完成签到,获得积分10
3秒前
沉敛一生发布了新的文献求助10
3秒前
柏忆南完成签到 ,获得积分10
3秒前
li发布了新的文献求助10
3秒前
dldddz发布了新的文献求助10
3秒前
jimmy完成签到,获得积分10
3秒前
田様应助侦察兵采纳,获得10
3秒前
鑫渊完成签到,获得积分10
3秒前
天冷了hhhdh完成签到,获得积分10
4秒前
ting完成签到,获得积分10
4秒前
微笑完成签到,获得积分10
4秒前
可爱的函函应助西宁阿采纳,获得30
5秒前
蓝莓松饼发布了新的文献求助10
5秒前
6秒前
哈哈发布了新的文献求助10
6秒前
高高发布了新的文献求助10
6秒前
一拳一个小欧阳完成签到 ,获得积分10
6秒前
明雨天地完成签到,获得积分10
6秒前
deathmask完成签到 ,获得积分10
6秒前
老实志泽完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
hata完成签到,获得积分10
7秒前
Pangsj完成签到,获得积分10
8秒前
8秒前
青蛙旅行完成签到 ,获得积分10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
9秒前
小马甲应助mimi采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672