Identification of Genetic Risk Factors Based on Disease Progression Derived From Longitudinal Brain Imaging Phenotypes

表型 神经影像学 影像遗传学 计算机科学 鉴定(生物学) 疾病 计算生物学 遗传学 生物 基因 医学 病理 神经科学 植物
作者
Lei Du,Ying Zhao,Jian‐Ting Zhang,Muheng Shang,Jin Zhang,Junwei Han
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (3): 928-939 被引量:2
标识
DOI:10.1109/tmi.2023.3325380
摘要

Neurodegenerative disorders usually happen stage-by-stage rather than overnight. Thus, cross-sectional brain imaging genetic methods could be insufficient to identify genetic risk factors. Repeatedly collecting imaging data over time appears to solve the problem. But most existing imaging genetic methods only use longitudinal imaging phenotypes straightforwardly, ignoring the disease progression trajectory which might be a more stable disease signature. In this paper, we propose a novel sparse multi-task mixed-effects longitudinal imaging genetic method (SMMLING). In our model, disease progression fitting and genetic risk factors identification are conducted jointly. Specifically, SMMLING models the disease progression using longitudinal imaging phenotypes, and then associates fitted disease progression with genetic variations. The baseline status and changing rate, i.e., the intercept and slope, of the progression trajectory thus shoulder the responsibility to discover loci of interest, which would have superior and stable performance. To facilitate the interpretation and stability, we employ $\ell _{{2},{1}}$ -norm and the fused group lasso (FGL) penalty to identify loci at both the individual level and group level. SMMLING can be solved by an efficient optimization algorithm which is guaranteed to converge to the global optimum. We evaluate SMMLING on synthetic data and real longitudinal neuroimaging genetic data. Both results show that, compared to existing longitudinal methods, SMMLING can not only decrease the modeling error but also identify more accurate and relevant genetic factors. Most risk loci reported by SMMLING are missed by comparison methods, implicating its superiority in genetic risk factors identification. Consequently, SMMLING could be a promising computational method for longitudinal imaging genetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助wuyoung采纳,获得10
2秒前
厦屿关注了科研通微信公众号
2秒前
年轻大楚完成签到,获得积分10
2秒前
科研通AI2S应助笑笑采纳,获得30
3秒前
爱唱歌的yu仔完成签到,获得积分10
4秒前
13504544355完成签到 ,获得积分10
6秒前
今后应助多宝鱼采纳,获得10
6秒前
丘比特应助多宝鱼采纳,获得10
6秒前
乐观寻绿应助mmill采纳,获得10
7秒前
包容的人生完成签到,获得积分20
7秒前
10秒前
12秒前
科研通AI2S应助123456采纳,获得10
13秒前
小栗发布了新的文献求助10
13秒前
子凡发布了新的文献求助10
13秒前
明昼完成签到,获得积分10
13秒前
14秒前
chuuuuu关注了科研通微信公众号
14秒前
15秒前
V——V5555发布了新的文献求助10
16秒前
FYhan完成签到,获得积分10
16秒前
顾初洛发布了新的文献求助30
18秒前
18秒前
血压低我学医完成签到,获得积分20
18秒前
厦屿发布了新的文献求助10
19秒前
打打应助夏青荷采纳,获得10
20秒前
小南哥发布了新的文献求助10
21秒前
英俊的铭应助卢卿采纳,获得10
21秒前
整齐靖儿发布了新的文献求助10
21秒前
CHERIE发布了新的文献求助10
21秒前
我是老大应助BaBa采纳,获得10
24秒前
25秒前
小辉完成签到,获得积分10
25秒前
yanghua完成签到 ,获得积分10
25秒前
28秒前
28秒前
李爱国应助尊敬千山采纳,获得10
29秒前
万能图书馆应助小栗采纳,获得10
30秒前
30秒前
30秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329637
求助须知:如何正确求助?哪些是违规求助? 2959215
关于积分的说明 8594828
捐赠科研通 2637692
什么是DOI,文献DOI怎么找? 1443719
科研通“疑难数据库(出版商)”最低求助积分说明 668843
邀请新用户注册赠送积分活动 656278