AI in imaging and therapy: innovations, ethics, and impact – introductory editorial

医学 人工智能 图书馆学 计算机科学
作者
Issam El Naqa,Karen Drukker
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:96 (1150) 被引量:1
标识
DOI:10.1259/bjr.20239004
摘要

AI in imaging and therapy: innovations, ethics and impact: EditorialAI in imaging and therapy: innovations, ethics, and impact – introductory editorialIssam El Naqa and Karen DrukkerIssam El NaqaMoffitt Cancer Center, Tampa, Florida, USASearch for more papers by this author and Karen DrukkerUniversity of Chicago, Chicago, Illinois, USASearch for more papers by this authorPublished Online:25 Sep 2023https://doi.org/10.1259/bjr.20239004SectionsPDF/EPUBFull Text ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InEmail About"AI in imaging and therapy: innovations, ethics, and impact – introductory editorial." The British Journal of Radiology, 96(1150), pp. REFERENCES1. Mello-Thoms C, Mello CAB. Clinical applications of artificial intelligence in radiology. Br J Radiol 2023; 96: 20221031. doi: https://doi.org/10.1259/bjr.20221031 Google Scholar2. Wei L, Niraula D, Gates EDH, Fu J, Luo Y, Nyflot MJ, et al.. Artificial intelligence (AI) and machine learning (ML) in precision oncology: a review on enhancing discoverability through multiomics integration. Br J Radiol 2023; 96: 20230211. doi: https://doi.org/10.1259/bjr.20230211 Google Scholar3. Drabiak K, Kyzer S, Nemov V, El Naqa I. AI and machine learning ethics, law, diversity, and global impact. Br J Radiol 2023; 96: 20220934. doi: https://doi.org/10.1259/bjr.20220934 Google Scholar4. Gichoya JW, Thomas K, Celi LA, Safdar N, Banerjee I, Banja JD, et al.. AI pitfalls and what not to do: mitigating bias in AI. Br J Radiol 2023; 96: 20230023. doi: https://doi.org/10.1259/bjr.20230023 Google Scholar5. Sahiner B, Chen W, Samala RK, Petrick N. Data drift in medical machine learning: implications and potential remedies. Br J Radiol 2023; 96: 20220878. doi: https://doi.org/10.1259/bjr.20220878 Google Scholar6. JinKW, LiQ, Xie Y, Xiao G. Artificial intelligence in mental healthcare: an overview and future perspectives. Br J Radiol 2023; 96: 20230213. doi: https://doi.org/10.1259/bjr.20230213 Google Scholar7. Cui S, Traverso A, Niraula D, Zou J, Luo Y, Owen D, et al.. Interpretable artificial intelligence in Radiology and radiation oncology. Br J Radiol 2023; 96: 20230142. doi: https://doi.org/10.1259/bjr.20230142 Google Scholar8. Armato SG, Drukker K, Hadjiiski L. AI in medical imaging grand challenges: translation from competition to research benefit and patient care. Br J Radiol 2023; 96: 20221152. doi: https://doi.org/10.1259/bjr.20221152 Google Scholar9. Rehman MHur, Hugo Lopez Pinaya W, Nachev P, Teo JT, Ourselin S, Cardoso MJ. Federated learning for medical imaging radiology: a review. Br J Radiol 2023; 96: 20220890. doi: https://doi.org/10.1259/bjr.20220890 Google Scholar10. Kelly BS, Judge C, Hoare S, Colleran G, Lawlor A, Killeen RP. How to apply evidence-based practice to the use of artificial intelligence in radiology (EBRAI) using the data algorithm training output (DATO) method. Br J Radiol 2023; 96: 20220215. doi: https://doi.org/10.1259/bjr.20220215 Google Scholar11. Brady SL. Implementation of AI image reconstruction in CT-how is it validated and what dose reductions can be achieved. Br J Radiol 2023; 96: 20220915. doi: https://doi.org/10.1259/bjr.20220915 Medline, Google Scholar12. Reader AJ, Pan B. AI for PET image reconstruction. Br J Radiol 2023; 96: 20230292. doi: https://doi.org/10.1259/bjr.20230292 Google Scholar13. Yasaka K, Hatano S, Mizuki M, Okimoto N, Kubo T, Shibata E, et al.. Effects of deep learning on radiologists' and radiology residents' performance in identifying esophageal cancer on CT. Br J Radiol 2023; 96: 20220685. doi: https://doi.org/10.1259/bjr.20220685 Google Scholar Next article FiguresReferencesRelatedDetails Volume 96, Issue 1150October 2023 © 2023 The Authors. Published by the British Institute of Radiology History Published onlineSeptember 25,2023 Metrics Download PDF

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呵呵完成签到,获得积分10
刚刚
令狐翠发布了新的文献求助10
刚刚
双shuang完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
小雅完成签到 ,获得积分10
2秒前
李四完成签到 ,获得积分10
2秒前
科研通AI2S应助李小胖采纳,获得10
2秒前
3秒前
猕猴桃完成签到,获得积分10
3秒前
3秒前
百里瓶窑发布了新的文献求助30
4秒前
cdd发布了新的文献求助30
5秒前
FashionBoy应助huchen采纳,获得10
5秒前
5秒前
隐形曼青应助南风不竞采纳,获得10
5秒前
迷津。完成签到,获得积分10
6秒前
隐形曼青应助哭泣火车采纳,获得10
6秒前
6秒前
清蒸鱼发布了新的文献求助10
7秒前
pink发布了新的文献求助10
7秒前
WCY发布了新的文献求助10
7秒前
星辰大海应助林一采纳,获得10
7秒前
科研顺利发布了新的文献求助10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
酷波er应助呐呐采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
三黑猫应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
周周完成签到,获得积分10
8秒前
哇哈哈应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
美国体育史 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259595
求助须知:如何正确求助?哪些是违规求助? 2901170
关于积分的说明 8314280
捐赠科研通 2570622
什么是DOI,文献DOI怎么找? 1396595
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631656