Recent progress on 3D-printed gelatin methacrylate-based biomaterials for articular cartilage repair

脚手架 明胶 软骨 组织工程 生物医学工程 材料科学 关节软骨 3D打印 再生(生物学) 自愈水凝胶 生物相容性 纳米技术 关节软骨修复 3d打印 骨关节炎 化学 解剖 工程类 复合材料 医学 病理 生物化学 替代医学 生物 细胞生物学 高分子化学 冶金
作者
Chao Liang,Guowei Huang,Ming Yu,Liu Yang,Tao Cheng,Aiguo Li,Wen Wang,Shengnan Qin
出处
期刊:International Journal of bioprinting [Whioce Publishing Pte Ltd.]
卷期号:9 (6): 0116-0116 被引量:2
标识
DOI:10.36922/ijb.0116
摘要

The structure and composition of articular cartilage is complex, and its self-healing ability is limited, and thus, it is difficult to achieve ideal healing once the articular cartilage is damaged. Recently, three-dimensional (3D) printing technology has provided a new possibility for the repair of articular cartilage. Engineered cartilage tissues can be fabricated by superimposing customized inks, considering different geometric structures and components of tissues. 3D printing can be effectively used to manufacture high-precision structures with complex geometry, solving the shortcomings of traditional scaffold fabrication techniques. Gelatin methacrylate (GelMA) is modified gelatin and is currently a widely used 3D printing ink due to its photocrosslinking properties. With good biocompatibility and tunable physical properties, it can provide a good scaffold platform for cell proliferation and growth factor release. Given that the role of 3D printing technology in cartilage repair has been widely reported, this article reviews the research progress of 3D-printed GelMA-based biomaterials in articular cartilage tissue engineering. We focus primarily on how 3D printing technology addresses the existing challenges inherent to the field of articular cartilage tissue engineering. We accentuate the modifications implemented in GelMA-based 3D printing scaffolds to optimize articular cartilage regeneration. Additionally, we provide a comprehensive summary of the utilization of GelMA-based biomaterials incorporating various cells, growth factors, or other tissue components and highlight how these adaptations, in conjunction with the benefits of 3D printing technology, facilitate improvements the articular cartilage repair.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
WZW完成签到 ,获得积分10
1秒前
外向易形完成签到,获得积分10
2秒前
3秒前
无花果应助hululu采纳,获得30
4秒前
深情安青应助啦啦啦采纳,获得10
4秒前
小马甲应助任梓宁采纳,获得10
5秒前
czwu发布了新的文献求助150
5秒前
动听如天完成签到,获得积分10
5秒前
FLX完成签到,获得积分10
6秒前
6秒前
hokin33发布了新的文献求助10
6秒前
6秒前
7秒前
吴兰田发布了新的文献求助10
7秒前
小布完成签到,获得积分10
7秒前
Lin完成签到,获得积分10
8秒前
megan完成签到,获得积分10
8秒前
8秒前
清秀的尔曼完成签到,获得积分10
9秒前
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
daq应助科研通管家采纳,获得10
11秒前
哈密瓜发布了新的文献求助10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
itachi完成签到,获得积分10
11秒前
迷路采珊完成签到,获得积分10
12秒前
wo发布了新的文献求助10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155565
求助须知:如何正确求助?哪些是违规求助? 2806679
关于积分的说明 7870461
捐赠科研通 2465012
什么是DOI,文献DOI怎么找? 1312079
科研通“疑难数据库(出版商)”最低求助积分说明 629860
版权声明 601892