Recent progress on 3D-printed gelatin methacrylate-based biomaterials for articular cartilage repair

脚手架 明胶 软骨 组织工程 生物医学工程 材料科学 关节软骨 3D打印 再生(生物学) 自愈水凝胶 生物相容性 纳米技术 关节软骨修复 3d打印 骨关节炎 化学 解剖 工程类 复合材料 医学 病理 生物化学 替代医学 生物 细胞生物学 高分子化学 冶金
作者
Chao Liang,Guowei Huang,Ming Yu,Liu Yang,Tao Cheng,Aiguo Li,Wen Wang,Shengnan Qin
出处
期刊:International Journal of bioprinting [Whioce Publishing Pte Ltd.]
卷期号:9 (6): 0116-0116 被引量:2
标识
DOI:10.36922/ijb.0116
摘要

The structure and composition of articular cartilage is complex, and its self-healing ability is limited, and thus, it is difficult to achieve ideal healing once the articular cartilage is damaged. Recently, three-dimensional (3D) printing technology has provided a new possibility for the repair of articular cartilage. Engineered cartilage tissues can be fabricated by superimposing customized inks, considering different geometric structures and components of tissues. 3D printing can be effectively used to manufacture high-precision structures with complex geometry, solving the shortcomings of traditional scaffold fabrication techniques. Gelatin methacrylate (GelMA) is modified gelatin and is currently a widely used 3D printing ink due to its photocrosslinking properties. With good biocompatibility and tunable physical properties, it can provide a good scaffold platform for cell proliferation and growth factor release. Given that the role of 3D printing technology in cartilage repair has been widely reported, this article reviews the research progress of 3D-printed GelMA-based biomaterials in articular cartilage tissue engineering. We focus primarily on how 3D printing technology addresses the existing challenges inherent to the field of articular cartilage tissue engineering. We accentuate the modifications implemented in GelMA-based 3D printing scaffolds to optimize articular cartilage regeneration. Additionally, we provide a comprehensive summary of the utilization of GelMA-based biomaterials incorporating various cells, growth factors, or other tissue components and highlight how these adaptations, in conjunction with the benefits of 3D printing technology, facilitate improvements the articular cartilage repair.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你若化成风完成签到,获得积分10
刚刚
辉辉发布了新的文献求助20
刚刚
special发布了新的文献求助10
刚刚
小二郎应助科研顺利采纳,获得10
2秒前
aa完成签到,获得积分10
2秒前
徐小赞发布了新的文献求助30
2秒前
领导范儿应助小艺采纳,获得10
3秒前
4秒前
狮子卷卷完成签到,获得积分10
6秒前
6秒前
李健应助呆萌雁丝采纳,获得20
8秒前
情怀应助舒服的灰狼采纳,获得10
8秒前
9秒前
ayw发布了新的文献求助10
10秒前
科研通AI2S应助sumugeng采纳,获得10
10秒前
12秒前
special发布了新的文献求助10
13秒前
13秒前
CipherSage应助hdh采纳,获得10
14秒前
不想搞科研的科研狗完成签到 ,获得积分10
15秒前
15秒前
NexusExplorer应助一丁雨采纳,获得10
16秒前
hedianmoony完成签到,获得积分20
16秒前
18秒前
19秒前
Dawn完成签到,获得积分10
21秒前
21秒前
poleny发布了新的文献求助30
22秒前
special发布了新的文献求助10
23秒前
23秒前
CodeCraft应助小陈同学采纳,获得10
23秒前
24秒前
左丘世立发布了新的文献求助10
26秒前
liuliu完成签到 ,获得积分10
27秒前
pokemeow发布了新的文献求助10
28秒前
Dawn发布了新的文献求助20
28秒前
28秒前
lishunzcqty发布了新的文献求助50
28秒前
夜曦完成签到 ,获得积分10
29秒前
lxy完成签到,获得积分10
29秒前
高分求助中
Cambridge introduction to intercultural communication 1000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
A Chronicle of Small Beer: The Memoirs of Nan Green 1000
Understanding Autism and Autistic Functioning 950
From Rural China to the Ivy League: Reminiscences of Transformations in Modern Chinese History 900
Eric Dunning and the Sociology of Sport 850
QMS18Ed2 | process management. 2nd ed 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2915464
求助须知:如何正确求助?哪些是违规求助? 2554162
关于积分的说明 6910445
捐赠科研通 2215586
什么是DOI,文献DOI怎么找? 1177789
版权声明 588353
科研通“疑难数据库(出版商)”最低求助积分说明 576487