A unified model of arithmetic with whole numbers, fractions, and decimals.

算术 十进制的 仿射算法 任意精度算法 数学 分数(化学) 心理信息 算术电路复杂性 化学 有机化学 梅德林 仿射变换 政治学 纯数学 法学
作者
David W. Braithwaite,Robert S. Siegler
出处
期刊:Psychological Review [American Psychological Association]
卷期号:131 (2): 431-455 被引量:9
标识
DOI:10.1037/rev0000440
摘要

This article describes UMA (Unified Model of Arithmetic), a theory of children's arithmetic implemented as a computational model. UMA builds on FARRA (Fraction Arithmetic Reflects Rules and Associations; Braithwaite et al., 2017), a model of children's fraction arithmetic. Whereas FARRA-like all previous models of arithmetic-focused on arithmetic with only one type of number, UMA simulates arithmetic with whole numbers, fractions, and decimals. The model was trained on arithmetic problems from the first to sixth grade volumes of a math textbook series; its performance on tests administered at the end of each grade was compared to the performance of children in prior empirical research. In whole number arithmetic (Study 1), fraction arithmetic (Study 2), and decimal arithmetic (Study 3), UMA displayed types of errors, effects of problem features on error rates, and individual differences in strategy use that resembled those documented in the previous studies of children. Further, UMA generated correlations between individual differences in basic and advanced arithmetic skills similar to those observed in longitudinal studies of arithmetic development (Study 4). The results support UMA's main theoretical assumptions regarding arithmetic development: (a) most errors reflect small deviations from standard procedures via two mechanisms, overgeneralization and omission; (b) between-problem variations in error rates reflect effects of intrinsic difficulty and differential amounts of practice; and (c) individual differences in strategy use reflect underlying variation in parameters governing learning and decision making. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动人的老黑完成签到 ,获得积分10
1秒前
星星泡饭发布了新的文献求助10
1秒前
2秒前
Silence完成签到,获得积分10
2秒前
yan儿发布了新的文献求助10
3秒前
pearl完成签到,获得积分10
4秒前
hahah发布了新的文献求助10
4秒前
请叫我风吹麦浪应助胖豆采纳,获得10
4秒前
无花果应助幸福胡萝卜采纳,获得10
4秒前
5秒前
卡卡发布了新的文献求助10
5秒前
wanci应助风趣的天真采纳,获得10
5秒前
Silence发布了新的文献求助10
5秒前
清爽老九发布了新的文献求助100
5秒前
6秒前
衔尾蛇发布了新的文献求助10
6秒前
小蔡会有猫的完成签到,获得积分10
6秒前
zhai发布了新的文献求助10
6秒前
6秒前
6秒前
村上春树的摩的完成签到 ,获得积分10
6秒前
6秒前
脑洞疼应助JACK采纳,获得10
7秒前
zhouyunan完成签到,获得积分10
7秒前
昵称发布了新的文献求助10
7秒前
7秒前
7秒前
馥日祎完成签到,获得积分10
7秒前
Ava应助Rui采纳,获得10
8秒前
coolkid完成签到 ,获得积分10
8秒前
贼拉瘦的美神完成签到,获得积分10
9秒前
tsy完成签到 ,获得积分10
10秒前
April发布了新的文献求助20
10秒前
11秒前
今后应助不安豁采纳,获得10
12秒前
huifang发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
67发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762