亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Q-learning based multi-objective immune algorithm for fuzzy flexible job shop scheduling problem considering dynamic disruptions

计算机科学 算法 启发式 模糊逻辑 数学优化 调度(生产过程) 动态优先级调度 地铁列车时刻表 人工智能 数学 操作系统
作者
Xiaolong Chen,Junqing Li,Ying Xu
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:83: 101414-101414 被引量:13
标识
DOI:10.1016/j.swevo.2023.101414
摘要

Confronted with complex industrial environments, dynamic disruptions like new job arrival and machine breakdown bring significant challenges to the robustness and stability of the manufacturing process, making the static production depart from the original scheduling scheme. To address this problem, a flexible job shop scheduling problem with fuzzy processing time, dynamic disruptions, and variable processing speeds is considered simultaneously. As well as three objectives of maximum completion time, total energy consumption, and average agreement index are demonstrated in this study. Then, a predictive-reactive dynamic/static rescheduling model is developed, where the off-line based mixed integer linear programming model and the on-line based rescheduling heuristics are proposed. Next, a multi-objective immune algorithm combined with a Q-learning algorithm (Q-MOIA) is developed. In the proposed algorithm, an active decoding heuristic based on the interval insertion mechanism is used to optimize the initial solutions. After that, the clonal selection-based immune algorithm and the Q-learning algorithm are adopted to improve the exploration and exploitation capabilities, respectively, where four objective-driven neighborhood structures are designed. Eventually, extensive computational experiments were conducted on 27 instances under static and dynamic scenarios to demonstrate the superiority and stability of the proposed predictive-reactive dynamic/static rescheduling model and the Q-MOIA. Comparative analysis with four state-of-the-art approaches revealed that proposed Q-MOIA outperformed in approximately 51.9%, 66.7%, and 83.3% of the instances for the three multi-objective metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
D.Heng发布了新的文献求助10
12秒前
19秒前
26秒前
chong0919发布了新的文献求助10
1分钟前
科目三应助小小学神采纳,获得10
1分钟前
1分钟前
小小学神发布了新的文献求助10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
五十一完成签到 ,获得积分10
2分钟前
村里的黑叔叔完成签到,获得积分10
2分钟前
bible完成签到,获得积分10
2分钟前
虚拟的眼神完成签到,获得积分10
2分钟前
lihongchi完成签到,获得积分10
2分钟前
Sair发布了新的文献求助50
2分钟前
大模型应助小小学神采纳,获得10
2分钟前
3分钟前
小小学神发布了新的文献求助10
3分钟前
香蕉觅云应助雪中采纳,获得10
3分钟前
张子捷应助科研通管家采纳,获得10
3分钟前
布饭a完成签到 ,获得积分10
4分钟前
liang关注了科研通微信公众号
4分钟前
4分钟前
思源应助我爱科研采纳,获得10
5分钟前
捉迷藏发布了新的文献求助10
5分钟前
5分钟前
5分钟前
wang发布了新的文献求助10
5分钟前
金光一闪发布了新的文献求助10
5分钟前
5分钟前
张子捷应助科研通管家采纳,获得10
5分钟前
张子捷应助科研通管家采纳,获得10
5分钟前
张子捷应助科研通管家采纳,获得10
5分钟前
今后应助金光一闪采纳,获得10
6分钟前
捉迷藏关注了科研通微信公众号
6分钟前
6分钟前
雪中发布了新的文献求助10
6分钟前
6分钟前
我爱科研发布了新的文献求助10
6分钟前
暗冰不冻应助否认冶游史采纳,获得10
6分钟前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
Project Studies: A Late Modern University Reform? 300
2024 Medicinal Chemistry Reviews 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167162
求助须知:如何正确求助?哪些是违规求助? 2818660
关于积分的说明 7921821
捐赠科研通 2478347
什么是DOI,文献DOI怎么找? 1320282
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438