已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An integrated chemical characterization based on FT-NIR, and GC–MS for the comparative metabolite profiling of 3 species of the genus Amomum

化学 掺假者 代谢物分析 传统医学 主成分分析 偏最小二乘回归 代谢组学 色谱法 化学计量学 人工智能 数学 医学 统计 计算机科学
作者
Gang He,Shaobing Yang,Yuanzhong Wang
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1280: 341869-341869 被引量:25
标识
DOI:10.1016/j.aca.2023.341869
摘要

The fruits and seeds of genus Amomum are well-known as medicinal plants and edible spices, and are used in countries such as China, India and Vietnam to treat malaria, gastrointestinal disorders and indigestion. The morphological differences between different species are relatively small, and technical characterization and identification techniques are needed.Fourier transform near infrared spectroscopy (FT-NIR) and gas chromatography-mass spectrometry (GC-MS), combined with principal component analysis and two-dimensional correlation analysis were used to characterize the chemical differences of Amomum tsao-ko, Amomum koenigii, and Amomum paratsaoko. The targets and pathways for the treatment of diabetes mellitus in three species were predicted using network pharmacology and screened for the corresponding pharmacodynamic components as potential quality markers. The results of "component-target-pathway" network showed that (+)-Nerolidol, 2-Nonanol, α-Terpineol, α-Pinene, 2-Nonanone had high degree values and may be the main active components. Partial least squares-discriminant analysis (PLS-DA) was further used to select for differential metabolites and was identified as a potential quality marker, 11 in total. PLS-DA and residual network (ResNet) classification models were developed for the identification of 3 species of the genus Amomum, ResNet model is more suitable for the identification study of large volume samples.This study characterizes the differences between the three species in a visual way and also provides a reliable technique for their identification, while demonstrating the ability of FT-NIR spectroscopy for fast, easy and accurate species identification. The results of this study lay the foundation for quality evaluation studies of genus Amomum and provide new ideas for the development of new drugs for the treatment of diabetes mellitus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤筝完成签到 ,获得积分10
1秒前
4秒前
4秒前
郭奕沛发布了新的文献求助50
5秒前
不摇碧莲完成签到 ,获得积分10
5秒前
雨洋完成签到,获得积分0
6秒前
6秒前
嘿嘿发布了新的文献求助10
7秒前
胡说八道发布了新的文献求助10
9秒前
9秒前
echo完成签到 ,获得积分10
10秒前
林兰特完成签到 ,获得积分10
10秒前
传奇3应助TingtingGZ采纳,获得10
11秒前
14秒前
16秒前
55155255发布了新的文献求助10
17秒前
17秒前
Ww发布了新的文献求助10
19秒前
李李05发布了新的文献求助10
21秒前
太阳花完成签到,获得积分10
22秒前
TingtingGZ发布了新的文献求助10
23秒前
Ching完成签到,获得积分10
24秒前
26秒前
27秒前
鹿鹿完成签到 ,获得积分10
27秒前
28秒前
蓝天应助郭奕沛采纳,获得10
32秒前
ZZyy发布了新的文献求助10
33秒前
咕噜坚果发布了新的文献求助10
33秒前
33秒前
xalone完成签到,获得积分10
36秒前
38秒前
xalone发布了新的文献求助10
39秒前
搜集达人应助Marshall采纳,获得10
40秒前
41秒前
白石杏发布了新的文献求助10
42秒前
小圭发布了新的文献求助10
46秒前
小小怪完成签到 ,获得积分10
46秒前
48秒前
油料种子关注了科研通微信公众号
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663892
求助须知:如何正确求助?哪些是违规求助? 4854151
关于积分的说明 15106245
捐赠科研通 4822200
什么是DOI,文献DOI怎么找? 2581283
邀请新用户注册赠送积分活动 1535500
关于科研通互助平台的介绍 1493747