An integrated chemical characterization based on FT-NIR, and GC–MS for the comparative metabolite profiling of 3 species of the genus Amomum

化学 掺假者 代谢物分析 传统医学 主成分分析 偏最小二乘回归 代谢组学 色谱法 化学计量学 人工智能 数学 医学 统计 计算机科学
作者
Gang He,Shaobing Yang,Yuanzhong Wang
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1280: 341869-341869 被引量:25
标识
DOI:10.1016/j.aca.2023.341869
摘要

The fruits and seeds of genus Amomum are well-known as medicinal plants and edible spices, and are used in countries such as China, India and Vietnam to treat malaria, gastrointestinal disorders and indigestion. The morphological differences between different species are relatively small, and technical characterization and identification techniques are needed.Fourier transform near infrared spectroscopy (FT-NIR) and gas chromatography-mass spectrometry (GC-MS), combined with principal component analysis and two-dimensional correlation analysis were used to characterize the chemical differences of Amomum tsao-ko, Amomum koenigii, and Amomum paratsaoko. The targets and pathways for the treatment of diabetes mellitus in three species were predicted using network pharmacology and screened for the corresponding pharmacodynamic components as potential quality markers. The results of "component-target-pathway" network showed that (+)-Nerolidol, 2-Nonanol, α-Terpineol, α-Pinene, 2-Nonanone had high degree values and may be the main active components. Partial least squares-discriminant analysis (PLS-DA) was further used to select for differential metabolites and was identified as a potential quality marker, 11 in total. PLS-DA and residual network (ResNet) classification models were developed for the identification of 3 species of the genus Amomum, ResNet model is more suitable for the identification study of large volume samples.This study characterizes the differences between the three species in a visual way and also provides a reliable technique for their identification, while demonstrating the ability of FT-NIR spectroscopy for fast, easy and accurate species identification. The results of this study lay the foundation for quality evaluation studies of genus Amomum and provide new ideas for the development of new drugs for the treatment of diabetes mellitus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SamYang发布了新的文献求助10
刚刚
啊啊啊啊完成签到,获得积分10
刚刚
lll发布了新的文献求助10
刚刚
1秒前
deepsuck发布了新的文献求助10
1秒前
3秒前
wasb131关注了科研通微信公众号
3秒前
3秒前
米亚完成签到 ,获得积分10
3秒前
传奇3应助是莉莉娅采纳,获得10
3秒前
啊啊啊啊发布了新的文献求助30
4秒前
5秒前
zxy发布了新的文献求助10
5秒前
友好谷蓝发布了新的文献求助10
5秒前
wxy发布了新的文献求助10
5秒前
李爱国应助小西采纳,获得10
7秒前
慕青应助HM采纳,获得10
7秒前
7秒前
wggggggy关注了科研通微信公众号
7秒前
小杭杭弟完成签到,获得积分10
7秒前
传奇3应助潮汐采纳,获得10
8秒前
8秒前
8秒前
sunshine发布了新的文献求助10
8秒前
8秒前
dddd完成签到,获得积分10
9秒前
9秒前
何必在乎发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
酷炫翠柏发布了新的文献求助10
12秒前
12秒前
烟花应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
61发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711378
求助须知:如何正确求助?哪些是违规求助? 5203436
关于积分的说明 15264067
捐赠科研通 4863675
什么是DOI,文献DOI怎么找? 2610868
邀请新用户注册赠送积分活动 1561184
关于科研通互助平台的介绍 1518621