清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An integrated chemical characterization based on FT-NIR, and GC–MS for the comparative metabolite profiling of 3 species of the genus Amomum

化学 掺假者 代谢物分析 传统医学 主成分分析 偏最小二乘回归 代谢组学 色谱法 化学计量学 人工智能 数学 医学 统计 计算机科学
作者
Gang He,Shaobing Yang,Yuanzhong Wang
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1280: 341869-341869 被引量:25
标识
DOI:10.1016/j.aca.2023.341869
摘要

The fruits and seeds of genus Amomum are well-known as medicinal plants and edible spices, and are used in countries such as China, India and Vietnam to treat malaria, gastrointestinal disorders and indigestion. The morphological differences between different species are relatively small, and technical characterization and identification techniques are needed.Fourier transform near infrared spectroscopy (FT-NIR) and gas chromatography-mass spectrometry (GC-MS), combined with principal component analysis and two-dimensional correlation analysis were used to characterize the chemical differences of Amomum tsao-ko, Amomum koenigii, and Amomum paratsaoko. The targets and pathways for the treatment of diabetes mellitus in three species were predicted using network pharmacology and screened for the corresponding pharmacodynamic components as potential quality markers. The results of "component-target-pathway" network showed that (+)-Nerolidol, 2-Nonanol, α-Terpineol, α-Pinene, 2-Nonanone had high degree values and may be the main active components. Partial least squares-discriminant analysis (PLS-DA) was further used to select for differential metabolites and was identified as a potential quality marker, 11 in total. PLS-DA and residual network (ResNet) classification models were developed for the identification of 3 species of the genus Amomum, ResNet model is more suitable for the identification study of large volume samples.This study characterizes the differences between the three species in a visual way and also provides a reliable technique for their identification, while demonstrating the ability of FT-NIR spectroscopy for fast, easy and accurate species identification. The results of this study lay the foundation for quality evaluation studies of genus Amomum and provide new ideas for the development of new drugs for the treatment of diabetes mellitus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
Rottyyii发布了新的文献求助10
21秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
万能图书馆应助Rottyyii采纳,获得10
29秒前
宇文天思完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
37秒前
胖小羊完成签到 ,获得积分10
1分钟前
tt完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
lyw发布了新的文献求助10
2分钟前
搜集达人应助lyw采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
3分钟前
Cara发布了新的文献求助10
3分钟前
3分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
seven发布了新的文献求助10
3分钟前
3分钟前
雷金炜发布了新的文献求助10
3分钟前
Grace完成签到 ,获得积分10
3分钟前
雷金炜完成签到,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706456
求助须知:如何正确求助?哪些是违规求助? 5173834
关于积分的说明 15246926
捐赠科研通 4859958
什么是DOI,文献DOI怎么找? 2608291
邀请新用户注册赠送积分活动 1559198
关于科研通互助平台的介绍 1516964