Breaking boundaries: Artificial intelligence for pesticide detection and eco-friendly degradation

杀虫剂 环境科学 环境化学 污染 环境监测 生化工程 环境分析 计算机科学 化学 环境工程 生态学 生物 色谱法 工程类
作者
Diyasha Banerjee,Satadal Adhikary,Suchandra Bhattacharya,Aritra Chakraborty,Sohini Dutta,Sovona Chatterjee,Abhratanu Ganguly,Sayantani Nanda,Prem Rajak
出处
期刊:Environmental Research [Elsevier]
卷期号:241: 117601-117601 被引量:9
标识
DOI:10.1016/j.envres.2023.117601
摘要

Pesticides are extensively used agrochemicals across the world to control pest populations. However, irrational application of pesticides leads to contamination of various components of the environment, like air, soil, water, and vegetation, all of which build up significant levels of pesticide residues. Further, these environmental contaminants fuel objectionable human toxicity and impose a greater risk to the ecosystem. Therefore, search of methodologies having potential to detect and degrade pesticides in different environmental media is currently receiving profound global attention. Beyond the conventional approaches, Artificial Intelligence (AI) coupled with machine learning and artificial neural networks are rapidly growing branches of science that enable quick data analysis and precise detection of pesticides in various environmental components. Interestingly, nanoparticle (NP)-mediated detection and degradation of pesticides could be linked to AI algorithms to achieve superior performance. NP-based sensors stand out for their operational simplicity as well as their high sensitivity and low detection limits when compared to conventional, time-consuming spectrophotometric assays. NPs coated with fluorophores or conjugated with antibody or enzyme-anchored sensors can be used through Surface-Enhanced Raman Spectrometry, fluorescence, or chemiluminescence methodologies for selective and more precise detection of pesticides. Moreover, NPs assist in the photocatalytic breakdown of various organic and inorganic pesticides. Here, AI models are ideal means to identify, classify, characterize, and even predict the data of pesticides obtained through NP sensors. The present study aims to discuss the environmental contamination and negative impacts of pesticides on the ecosystem. The article also elaborates the AI and NP-assisted approaches for detecting and degrading a wide range of pesticide residues in various environmental and agrecultural sources including fruits and vegetables. Finally, the prevailing limitations and future goals of AI-NP-assisted techniques have also been dissected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助置啬夫采纳,获得10
2秒前
3秒前
ding应助冰雪采纳,获得10
3秒前
summer完成签到,获得积分10
4秒前
5秒前
fang完成签到 ,获得积分10
5秒前
bkagyin应助Sherry采纳,获得10
6秒前
7秒前
小蘑菇应助图喵喵采纳,获得10
7秒前
7秒前
hgc完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
如意半青完成签到,获得积分10
9秒前
xioabu完成签到,获得积分10
9秒前
nextconnie发布了新的文献求助10
10秒前
11秒前
11秒前
nextconnie发布了新的文献求助30
12秒前
nextconnie发布了新的文献求助10
12秒前
nextconnie发布了新的文献求助10
12秒前
nextconnie发布了新的文献求助10
12秒前
13秒前
xioabu发布了新的文献求助10
14秒前
gujianhua发布了新的文献求助10
14秒前
飘逸凌柏发布了新的文献求助10
14秒前
15秒前
baolong发布了新的文献求助10
16秒前
难过戎发布了新的文献求助10
17秒前
Orange发布了新的文献求助10
18秒前
天天快乐应助郭文博采纳,获得10
18秒前
竹筏过海应助科研通管家采纳,获得50
20秒前
乐乐应助科研通管家采纳,获得30
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
Akim应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
ceeray23应助科研通管家采纳,获得10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466496
求助须知:如何正确求助?哪些是违规求助? 3059287
关于积分的说明 9065817
捐赠科研通 2749768
什么是DOI,文献DOI怎么找? 1508697
科研通“疑难数据库(出版商)”最低求助积分说明 697013
邀请新用户注册赠送积分活动 696804