A Muti-Substrate Flavonol O-glucosyltransferases from Safflower

山奈酚 糖基转移酶 类黄酮 槲皮素 葡萄糖基转移酶 生物化学 黄酮醇 葡萄糖苷 糖苷 化学 查尔酮合酶 立体化学 抗氧化剂 替代医学 病理 医学
作者
Shuyi Qi,Bei-Bei He,Haotian Wang,Yuxi Duan,Lunuan Wang,Yue Gao,Meili Guo
出处
期刊:Molecules [MDPI AG]
卷期号:28 (22): 7613-7613
标识
DOI:10.3390/molecules28227613
摘要

To explore the complete biosynthesis process of flavonoid glycosides in safflower, specifically the key glycosyltransferase that might be involved, as well as to develop an efficient biocatalyst to synthesize flavonoid glycosides, a glycosyltransferase CtUGT4, with flavonoid-O-glycosyltransferase activity, was identified in safflower. The fusion protein of CtUGT4 was heterologously expressed in Escherichia coli, and the target protein was purified. The recombinant protein can catalyze quercetin to form quercetin-7-O-glucoside, and kaempferol to form kaempferol-3-O in vitro, and a series of flavones, flavonols, dihydroflavones, chalcones, and chalcone glycosides were used as substrates to generate new products. CtUGT4 was expressed in the tobacco transient expression system, and the enzyme activity results showed that it could catalyze kaempferol to kaempferol-3-O-glucoside, and quercetin to quercetin-3-O-glucoside. After overexpressing CtUGT4 in safflower, the content of quercetin-3-O-rutinoside in the safflower florets increased significantly, and the content of quercetin-3-O-glucoside also tended to increase, which preliminarily confirmed the function of CtUGT4 flavonoid-O-glycosyltransferase. This work demonstrated the flavonoid-O-glycosyltransferase function of safflower CtUGT4 and showed differences in the affinity for different flavonoid substrates and the regioselectivity of catalytic sites in safflower, both in vivo and in vitro, providing clues for further research regarding the function of UGT genes, as well as new ideas for the cultivation engineering of the directional improvement of effective metabolites in safflower.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大个应助无限的芮采纳,获得10
1秒前
善学以致用应助高伟杰采纳,获得10
1秒前
慕青应助流浪采纳,获得10
2秒前
铁马踏冰河完成签到,获得积分10
2秒前
醉熏的凡旋完成签到 ,获得积分10
2秒前
Liu发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
Ruby完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
7秒前
7秒前
丘比特应助从容的问凝采纳,获得10
9秒前
积极慕梅发布了新的文献求助50
9秒前
嘟嘟发布了新的文献求助10
10秒前
无限的芮完成签到,获得积分20
10秒前
11秒前
像鱼发布了新的文献求助10
12秒前
12秒前
mhr发布了新的文献求助10
12秒前
13秒前
14秒前
榆安关注了科研通微信公众号
14秒前
LC应助花开富贵采纳,获得10
14秒前
CipherSage应助崔同学采纳,获得10
15秒前
sxy完成签到,获得积分20
15秒前
16秒前
17秒前
sulh发布了新的文献求助10
17秒前
今后应助1111_bb采纳,获得10
18秒前
Akim应助要减肥的从筠采纳,获得10
20秒前
流浪发布了新的文献求助10
20秒前
Mor0se完成签到,获得积分10
21秒前
大模型应助科研小狗采纳,获得10
22秒前
22秒前
YongGanNN发布了新的文献求助10
23秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125274
求助须知:如何正确求助?哪些是违规求助? 2775580
关于积分的说明 7727081
捐赠科研通 2431059
什么是DOI,文献DOI怎么找? 1291657
科研通“疑难数据库(出版商)”最低求助积分说明 622216
版权声明 600368