Assessing long-term trends in vegetation cover change in the Xilin River Basin: Potential for monitoring grassland degradation and restoration

草原 植被(病理学) 环境科学 草地退化 自然地理学 土地覆盖 水文学(农业) 遥感 土地利用 生态学 地理 地质学 医学 岩土工程 病理 生物
作者
Yajun Zhou,Okke Batelaan,Huade Guan,Tingxi Liu,Limin Duan,Yixuan Wang,Xia Li
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:349: 119579-119579 被引量:23
标识
DOI:10.1016/j.jenvman.2023.119579
摘要

Under the influence of climate change and human activities, the problem of grassland degradation is becoming increasingly severe. Detection of changes in vegetation cover is crucial for a better understanding of the interaction between humans and ecosystems. This study maps changes in vegetation cover using the Google Earth Engine (GEE). We used 36 years of Landsat satellite imagery (1985–2020) in the Xilin River Basin, China, to classify grassland conditions and validated the results with field observation data. The overall classification of the model accuracy assessment was 83.3%. The Dynamic Reference Vegetation Cover Method (DRCM) was adopted to remove the effect of interannual variation of rainfall, allowing to focus on the impact of human activities on vegetation cover changes. The results identify five categories of vegetation cover changes: significantly increased, potentially increased, stable, potentially decreased, and significantly decreased. The reference level is derived from the most persistent land surface coverage across different grassland types and all years. Overall, 9.3% of the study area had a significant increase in vegetation cover, 14.2% a potential increase, 48.6% of the area showed a stable vegetation condition, 9.8% showed a potential decrease, and 18.1% a significant decrease in vegetation cover. The largest proportion of combined potential and significant reduction was 35.2% for desert grassland, where the vegetation faced the most severe reduction. This study will provide a basis for identifying grassland degradation and developing scientific management policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐畅完成签到 ,获得积分10
1秒前
2秒前
老龙发布了新的文献求助10
3秒前
传奇3应助刘钊扬采纳,获得10
4秒前
小萌新完成签到,获得积分10
4秒前
咯咚发布了新的文献求助10
4秒前
4秒前
科研通AI6应助xuan采纳,获得80
5秒前
nwds发布了新的文献求助10
5秒前
5秒前
xiaoxiao关注了科研通微信公众号
5秒前
5秒前
bzlish发布了新的文献求助10
6秒前
汉堡包应助zzx采纳,获得10
6秒前
求助文献完成签到,获得积分20
7秒前
mark完成签到,获得积分10
7秒前
酷波er应助甜甜醉波采纳,获得10
8秒前
烟花应助陈志强采纳,获得10
8秒前
8秒前
洪晖阳完成签到,获得积分10
9秒前
莫筱铭发布了新的文献求助10
9秒前
momeak发布了新的文献求助10
10秒前
Akim应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
123应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
汤飞飞完成签到,获得积分10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
asdfzxcv应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
123应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
欢呼乘风应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
123应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858