Assessing long-term trends in vegetation cover change in the Xilin River Basin: Potential for monitoring grassland degradation and restoration

草原 植被(病理学) 环境科学 草地退化 自然地理学 土地覆盖 水文学(农业) 遥感 土地利用 生态学 地理 地质学 医学 岩土工程 病理 生物
作者
Yajun Zhou,Okke Batelaan,Huade Guan,Tingxi Liu,Limin Duan,Yixuan Wang,Xia Li
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:349: 119579-119579 被引量:23
标识
DOI:10.1016/j.jenvman.2023.119579
摘要

Under the influence of climate change and human activities, the problem of grassland degradation is becoming increasingly severe. Detection of changes in vegetation cover is crucial for a better understanding of the interaction between humans and ecosystems. This study maps changes in vegetation cover using the Google Earth Engine (GEE). We used 36 years of Landsat satellite imagery (1985–2020) in the Xilin River Basin, China, to classify grassland conditions and validated the results with field observation data. The overall classification of the model accuracy assessment was 83.3%. The Dynamic Reference Vegetation Cover Method (DRCM) was adopted to remove the effect of interannual variation of rainfall, allowing to focus on the impact of human activities on vegetation cover changes. The results identify five categories of vegetation cover changes: significantly increased, potentially increased, stable, potentially decreased, and significantly decreased. The reference level is derived from the most persistent land surface coverage across different grassland types and all years. Overall, 9.3% of the study area had a significant increase in vegetation cover, 14.2% a potential increase, 48.6% of the area showed a stable vegetation condition, 9.8% showed a potential decrease, and 18.1% a significant decrease in vegetation cover. The largest proportion of combined potential and significant reduction was 35.2% for desert grassland, where the vegetation faced the most severe reduction. This study will provide a basis for identifying grassland degradation and developing scientific management policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dreamchaser发布了新的文献求助10
刚刚
guojingjing发布了新的文献求助10
刚刚
咖喱发布了新的文献求助30
1秒前
1秒前
fpwx发布了新的文献求助10
1秒前
Owen应助时尚的萝采纳,获得10
1秒前
科研通AI6应助Son4904采纳,获得10
1秒前
天真玉米完成签到,获得积分10
1秒前
yangyang发布了新的文献求助10
2秒前
shendengya完成签到 ,获得积分10
2秒前
2秒前
张铭哲发布了新的文献求助10
3秒前
3秒前
发粪涂墙完成签到,获得积分10
3秒前
小青年儿完成签到 ,获得积分10
4秒前
朝qwer完成签到,获得积分10
4秒前
健忘的灵凡完成签到,获得积分10
4秒前
aa完成签到,获得积分10
4秒前
4秒前
4秒前
宋丽娟完成签到,获得积分10
5秒前
科目三应助小李采纳,获得10
5秒前
斯文败类应助浩然采纳,获得10
5秒前
zec200030完成签到,获得积分10
5秒前
5秒前
6秒前
幽默的溪灵完成签到,获得积分0
6秒前
lhx完成签到,获得积分20
6秒前
蒋宁完成签到,获得积分10
7秒前
大喇叭啦啦啦完成签到,获得积分10
7秒前
7秒前
hzhniubility完成签到,获得积分10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
芳菲依旧应助科研通管家采纳,获得30
8秒前
海聪天宇完成签到,获得积分10
8秒前
8秒前
小鲨鱼完成签到,获得积分10
8秒前
NEUROVASCULAR发布了新的文献求助10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386