Assessing long-term trends in vegetation cover change in the Xilin River Basin: Potential for monitoring grassland degradation and restoration

草原 植被(病理学) 环境科学 草地退化 自然地理学 土地覆盖 水文学(农业) 遥感 土地利用 生态学 地理 地质学 医学 岩土工程 病理 生物
作者
Yajun Zhou,Okke Batelaan,Huade Guan,Tingxi Liu,Limin Duan,Yixuan Wang,Xia Li
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:349: 119579-119579 被引量:23
标识
DOI:10.1016/j.jenvman.2023.119579
摘要

Under the influence of climate change and human activities, the problem of grassland degradation is becoming increasingly severe. Detection of changes in vegetation cover is crucial for a better understanding of the interaction between humans and ecosystems. This study maps changes in vegetation cover using the Google Earth Engine (GEE). We used 36 years of Landsat satellite imagery (1985–2020) in the Xilin River Basin, China, to classify grassland conditions and validated the results with field observation data. The overall classification of the model accuracy assessment was 83.3%. The Dynamic Reference Vegetation Cover Method (DRCM) was adopted to remove the effect of interannual variation of rainfall, allowing to focus on the impact of human activities on vegetation cover changes. The results identify five categories of vegetation cover changes: significantly increased, potentially increased, stable, potentially decreased, and significantly decreased. The reference level is derived from the most persistent land surface coverage across different grassland types and all years. Overall, 9.3% of the study area had a significant increase in vegetation cover, 14.2% a potential increase, 48.6% of the area showed a stable vegetation condition, 9.8% showed a potential decrease, and 18.1% a significant decrease in vegetation cover. The largest proportion of combined potential and significant reduction was 35.2% for desert grassland, where the vegetation faced the most severe reduction. This study will provide a basis for identifying grassland degradation and developing scientific management policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意完成签到,获得积分10
刚刚
SYBH完成签到,获得积分10
刚刚
聪慧咖啡豆完成签到,获得积分10
刚刚
1秒前
1秒前
学学学完成签到 ,获得积分10
1秒前
JamesPei应助liu采纳,获得10
1秒前
温尔应助tianmafei采纳,获得10
1秒前
小蜗牛完成签到,获得积分10
1秒前
2秒前
天真的涵易关注了科研通微信公众号
2秒前
菠萝冰棒发布了新的文献求助10
2秒前
hsy完成签到,获得积分10
2秒前
舒服的初蓝完成签到,获得积分10
3秒前
共享精神应助生产队的LV采纳,获得10
3秒前
kk完成签到 ,获得积分10
4秒前
BayMax完成签到,获得积分10
4秒前
太叔明辉完成签到,获得积分10
4秒前
鲁松发布了新的文献求助80
4秒前
等待的忻完成签到,获得积分10
4秒前
5秒前
Nuyoah发布了新的文献求助10
5秒前
欣喜落雁完成签到,获得积分10
5秒前
伶俐剑心发布了新的文献求助30
5秒前
ws发布了新的文献求助10
5秒前
5秒前
CipherSage应助内向以彤采纳,获得10
5秒前
瑞少完成签到,获得积分10
6秒前
6秒前
外向孤容完成签到,获得积分20
6秒前
6秒前
晴天完成签到,获得积分10
7秒前
烂漫的从彤完成签到,获得积分10
7秒前
7秒前
大模型应助coisini12采纳,获得10
7秒前
111完成签到,获得积分10
8秒前
JamesPei应助Lay采纳,获得10
8秒前
CodeCraft应助一般的采纳,获得10
8秒前
lee完成签到 ,获得积分10
8秒前
Li完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483071
求助须知:如何正确求助?哪些是违规求助? 4583840
关于积分的说明 14392895
捐赠科研通 4513440
什么是DOI,文献DOI怎么找? 2473476
邀请新用户注册赠送积分活动 1459525
关于科研通互助平台的介绍 1433024