Predicting academic performance of students with machine learning

计算机科学 学习分析 决策树 卓越 人工智能 教育数据挖掘 机器学习 声誉 心理干预 召回 集合预报 集成学习 知识管理 数据科学 心理学 社会科学 社会学 精神科 政治学 法学 认知心理学
作者
Yavuz Selim Balcıoğlu,Melike Artar
出处
期刊:Information Development [SAGE Publishing]
被引量:3
标识
DOI:10.1177/02666669231213023
摘要

This study investigates the effectiveness of machine learning and deep learning models for early prediction of student performance in higher education institutions. Using the Open University Learning Analytics (OULA) dataset, various models, including Decision Tree, Support Vector Machine, Neural Network, and Ensemble Model, were employed to predict student performance in three categories: Pass/Fail, Close to Fail, and Close to Pass. The Ensemble Model (EM) consistently outperformed other models, achieving the highest overall F1 measure, precision, recall, and accuracy. These results highlight the potential of data-driven techniques in informing educational stakeholders’ decision-making processes, enabling targeted interventions, and facilitating personalized learning strategies tailored to students’ needs. By identifying at-risk students early in the academic year, institutions can provide additional support to improve academic outcomes and retention rates. The study also discusses practical implications, including the development of pedagogical policies and guidelines based on early predictions, which can help educational institutions maintain strong academic outcomes and enhance their reputation for academic excellence. Future research aims to investigate the impact of individual activities on student performance and explore day-to-day student behaviors, enabling the creation of tailored pedagogical policies and guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KRYSTAL完成签到,获得积分10
1秒前
2秒前
small完成签到,获得积分10
2秒前
2秒前
3秒前
Foremelon发布了新的文献求助20
4秒前
烟花应助舞星辰采纳,获得10
5秒前
Singularity应助Santiago采纳,获得10
5秒前
Keily完成签到,获得积分10
5秒前
温悦发布了新的文献求助30
5秒前
satohoang发布了新的文献求助10
6秒前
调皮的西装完成签到,获得积分10
6秒前
干净热狗发布了新的文献求助20
6秒前
8秒前
9秒前
9秒前
荏苒发布了新的文献求助20
9秒前
杰老爷完成签到,获得积分10
10秒前
棋士发布了新的文献求助10
11秒前
Rena完成签到,获得积分10
11秒前
12秒前
12秒前
Sheng完成签到,获得积分10
12秒前
韩soso发布了新的文献求助10
12秒前
米糊发布了新的文献求助10
12秒前
xx驳回了Akim应助
12秒前
共享精神应助土亢土亢土采纳,获得10
13秒前
13秒前
Blue关注了科研通微信公众号
14秒前
14秒前
SYLH应助Foremelon采纳,获得10
15秒前
16秒前
Lily发布了新的文献求助10
17秒前
cc发布了新的文献求助10
17秒前
张姣姣发布了新的文献求助10
17秒前
17秒前
852发布了新的文献求助10
17秒前
17秒前
17秒前
kopp发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951800
求助须知:如何正确求助?哪些是违规求助? 3497233
关于积分的说明 11086336
捐赠科研通 3227767
什么是DOI,文献DOI怎么找? 1784520
邀请新用户注册赠送积分活动 868692
科研通“疑难数据库(出版商)”最低求助积分说明 801163