Predicting academic performance of students with machine learning

计算机科学 学习分析 决策树 卓越 人工智能 教育数据挖掘 机器学习 声誉 心理干预 召回 集合预报 集成学习 知识管理 数据科学 心理学 精神科 法学 认知心理学 社会学 社会科学 政治学
作者
Yavuz Selim Balcıoğlu,Melike Artar
出处
期刊:Information Development [SAGE Publishing]
被引量:3
标识
DOI:10.1177/02666669231213023
摘要

This study investigates the effectiveness of machine learning and deep learning models for early prediction of student performance in higher education institutions. Using the Open University Learning Analytics (OULA) dataset, various models, including Decision Tree, Support Vector Machine, Neural Network, and Ensemble Model, were employed to predict student performance in three categories: Pass/Fail, Close to Fail, and Close to Pass. The Ensemble Model (EM) consistently outperformed other models, achieving the highest overall F1 measure, precision, recall, and accuracy. These results highlight the potential of data-driven techniques in informing educational stakeholders’ decision-making processes, enabling targeted interventions, and facilitating personalized learning strategies tailored to students’ needs. By identifying at-risk students early in the academic year, institutions can provide additional support to improve academic outcomes and retention rates. The study also discusses practical implications, including the development of pedagogical policies and guidelines based on early predictions, which can help educational institutions maintain strong academic outcomes and enhance their reputation for academic excellence. Future research aims to investigate the impact of individual activities on student performance and explore day-to-day student behaviors, enabling the creation of tailored pedagogical policies and guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
vchen0621发布了新的文献求助10
1秒前
Hikx发布了新的文献求助10
2秒前
陈里里完成签到 ,获得积分10
2秒前
无聊的万天完成签到,获得积分10
2秒前
forge完成签到,获得积分10
2秒前
vicin完成签到,获得积分10
3秒前
15966014069发布了新的文献求助10
4秒前
lzn发布了新的文献求助30
5秒前
慕新完成签到,获得积分10
9秒前
9秒前
馆长举报研友_8KAzAn求助涉嫌违规
9秒前
幽默发卡完成签到,获得积分10
9秒前
zhangyulong完成签到,获得积分10
10秒前
Lucas应助JiaoJiao采纳,获得10
11秒前
sjj完成签到,获得积分10
12秒前
12秒前
bensonyang1013完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
沉默是金发布了新的文献求助10
15秒前
16秒前
Owen应助uromaster采纳,获得10
17秒前
凶狠的书白完成签到,获得积分10
18秒前
Ava应助云起龙都采纳,获得10
19秒前
20秒前
香蕉觅云应助Throb采纳,获得10
22秒前
linhappy完成签到,获得积分20
22秒前
帅气溪流完成签到,获得积分20
23秒前
唐泽雪穗发布了新的文献求助30
26秒前
蓝天应助李拾舟采纳,获得10
26秒前
27秒前
linhappy发布了新的文献求助10
27秒前
Night完成签到,获得积分10
28秒前
不想干活应助bnvgx采纳,获得10
28秒前
潇涯完成签到,获得积分10
29秒前
29秒前
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537931
求助须知:如何正确求助?哪些是违规求助? 3972654
关于积分的说明 12306475
捐赠科研通 3639434
什么是DOI,文献DOI怎么找? 2003881
邀请新用户注册赠送积分活动 1039207
科研通“疑难数据库(出版商)”最低求助积分说明 928594