MSI-XGNN: an explainable GNN computational framework integrating transcription- and methylation-level biomarkers for microsatellite instability detection

微卫星不稳定性 DNA甲基化 甲基化 计算机科学 抄写(语言学) 生物 计算生物学 基因 遗传学 基因表达 微卫星 语言学 哲学 等位基因
作者
Yang Cao,Dan Wang,Jin Wu,Zhanxin Yao,Si Shen,Chao Niu,Ying Liu,Pengcheng Zhang,Quannian Wang,Jinhao Wang,Hua Li,Xi Wei,Xinxing Wang,Qingyang Dong
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6) 被引量:9
标识
DOI:10.1093/bib/bbad362
摘要

Abstract Microsatellite instability (MSI) is a hypermutator phenotype caused by DNA mismatch repair deficiency. MSI has been reported in various human cancers, particularly colorectal, gastric and endometrial cancers. MSI is a promising biomarker for cancer prognosis and immune checkpoint blockade immunotherapy. Several computational methods have been developed for MSI detection using DNA- or RNA-based approaches based on next-generation sequencing. Epigenetic mechanisms, such as DNA methylation, regulate gene expression and play critical roles in the development and progression of cancer. We here developed MSI-XGNN, a new computational framework for predicting MSI status using bulk RNA-sequencing and DNA methylation data. MSI-XGNN is an explainable deep learning model that combines a graph neural network (GNN) model to extract features from the gene-methylation probe network with a CatBoost model to classify MSI status. MSI-XGNN, which requires tumor-only samples, exhibited comparable performance with two well-known methods that require tumor-normal paired sequencing data, MSIsensor and MANTIS and better performance than several other tools. MSI-XGNN also showed good generalizability on independent validation datasets. MSI-XGNN identified six MSI markers consisting of four methylation probes (EPM2AIP1|MLH1:cg14598950, EPM2AIP1|MLH1:cg27331401, LNP1:cg05428436 and TSC22D2:cg15048832) and two genes (RPL22L1 and MSH4) constituting the optimal feature subset. All six markers were significantly associated with beneficial tumor microenvironment characteristics for immunotherapy, such as tumor mutation burden, neoantigens and immune checkpoint molecules such as programmed cell death-1 and cytotoxic T-lymphocyte antigen-4. Overall, our study provides a powerful and explainable deep learning model for predicting MSI status and identifying MSI markers that can potentially be used for clinical MSI evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdfqwer应助kk采纳,获得10
刚刚
默欢发布了新的文献求助10
刚刚
Yliang完成签到 ,获得积分10
1秒前
无奈行恶发布了新的文献求助30
1秒前
赵铁皮发布了新的文献求助10
1秒前
小二郎应助YY采纳,获得30
1秒前
Jenny完成签到,获得积分10
1秒前
大橙子完成签到,获得积分10
2秒前
YYY完成签到,获得积分10
2秒前
2秒前
JL发布了新的文献求助10
3秒前
畅快傲松发布了新的文献求助10
3秒前
goKR完成签到,获得积分10
3秒前
3秒前
后来完成签到,获得积分20
3秒前
六尺巷发布了新的文献求助10
4秒前
4秒前
威武鸽子发布了新的文献求助10
4秒前
香蕉觅云应助一锅粥采纳,获得30
4秒前
5秒前
5秒前
不舍天真完成签到,获得积分10
6秒前
王志杰发布了新的文献求助10
6秒前
我推黑川茜完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
木木康发布了新的文献求助10
7秒前
汉堡包应助崔嘉坤采纳,获得10
7秒前
8秒前
8秒前
所所应助123采纳,获得10
8秒前
潤沁发布了新的文献求助10
8秒前
Zlinco完成签到,获得积分10
9秒前
武穆杰发布了新的文献求助20
9秒前
浮游应助111采纳,获得10
9秒前
9秒前
9秒前
缓慢钢笔发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505946
求助须知:如何正确求助?哪些是违规求助? 4601465
关于积分的说明 14476523
捐赠科研通 4535397
什么是DOI,文献DOI怎么找? 2485351
邀请新用户注册赠送积分活动 1468337
关于科研通互助平台的介绍 1440869