MSI-XGNN: an explainable GNN computational framework integrating transcription- and methylation-level biomarkers for microsatellite instability detection

微卫星不稳定性 DNA甲基化 甲基化 计算机科学 抄写(语言学) 生物 计算生物学 基因 遗传学 基因表达 微卫星 语言学 哲学 等位基因
作者
Yang Cao,Dan Wang,Jin Wu,Zhanxin Yao,Si Shen,Chao Niu,Ying Liu,Pengcheng Zhang,Quannian Wang,Jinhao Wang,Hua Li,Xi Wei,Xinxing Wang,Qingyang Dong
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6) 被引量:7
标识
DOI:10.1093/bib/bbad362
摘要

Abstract Microsatellite instability (MSI) is a hypermutator phenotype caused by DNA mismatch repair deficiency. MSI has been reported in various human cancers, particularly colorectal, gastric and endometrial cancers. MSI is a promising biomarker for cancer prognosis and immune checkpoint blockade immunotherapy. Several computational methods have been developed for MSI detection using DNA- or RNA-based approaches based on next-generation sequencing. Epigenetic mechanisms, such as DNA methylation, regulate gene expression and play critical roles in the development and progression of cancer. We here developed MSI-XGNN, a new computational framework for predicting MSI status using bulk RNA-sequencing and DNA methylation data. MSI-XGNN is an explainable deep learning model that combines a graph neural network (GNN) model to extract features from the gene-methylation probe network with a CatBoost model to classify MSI status. MSI-XGNN, which requires tumor-only samples, exhibited comparable performance with two well-known methods that require tumor-normal paired sequencing data, MSIsensor and MANTIS and better performance than several other tools. MSI-XGNN also showed good generalizability on independent validation datasets. MSI-XGNN identified six MSI markers consisting of four methylation probes (EPM2AIP1|MLH1:cg14598950, EPM2AIP1|MLH1:cg27331401, LNP1:cg05428436 and TSC22D2:cg15048832) and two genes (RPL22L1 and MSH4) constituting the optimal feature subset. All six markers were significantly associated with beneficial tumor microenvironment characteristics for immunotherapy, such as tumor mutation burden, neoantigens and immune checkpoint molecules such as programmed cell death-1 and cytotoxic T-lymphocyte antigen-4. Overall, our study provides a powerful and explainable deep learning model for predicting MSI status and identifying MSI markers that can potentially be used for clinical MSI evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的安白完成签到,获得积分10
1秒前
2秒前
邓可新完成签到,获得积分10
2秒前
空城完成签到,获得积分10
2秒前
3秒前
研友_5Z4ZA5完成签到,获得积分10
4秒前
5秒前
小二郎应助zhongjr_hz采纳,获得10
5秒前
浮光完成签到,获得积分10
5秒前
Titi完成签到 ,获得积分10
6秒前
caop完成签到,获得积分10
7秒前
7秒前
Lvy完成签到,获得积分10
7秒前
xliiii完成签到,获得积分10
7秒前
英仙座发布了新的文献求助20
8秒前
机智的孤兰完成签到 ,获得积分10
8秒前
8秒前
LLLLL完成签到,获得积分10
8秒前
hobowei完成签到 ,获得积分10
8秒前
mdbbs2021完成签到,获得积分10
10秒前
WTTTTTFFFFFF发布了新的文献求助10
10秒前
唔呜無完成签到 ,获得积分10
10秒前
jiajia发布了新的文献求助10
11秒前
易燃物品完成签到,获得积分10
11秒前
Hina完成签到,获得积分10
11秒前
123完成签到,获得积分10
11秒前
li完成签到,获得积分10
12秒前
123完成签到,获得积分10
12秒前
贱小贱完成签到,获得积分10
12秒前
鱼儿完成签到,获得积分10
13秒前
asdfqwer应助luwenxuan采纳,获得10
14秒前
ttc完成签到,获得积分10
15秒前
英仙座完成签到,获得积分10
16秒前
鹿叽叽完成签到,获得积分10
16秒前
humaning完成签到,获得积分10
16秒前
agnway发布了新的文献求助10
16秒前
16秒前
WTTTTTFFFFFF完成签到,获得积分10
16秒前
请叫我风吹麦浪应助刘兴采纳,获得10
16秒前
HongJiang完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027