已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MSI-XGNN: an explainable GNN computational framework integrating transcription- and methylation-level biomarkers for microsatellite instability detection

微卫星不稳定性 DNA甲基化 甲基化 计算机科学 抄写(语言学) 生物 计算生物学 基因 遗传学 基因表达 微卫星 语言学 哲学 等位基因
作者
Yang Cao,Qianqian Wang,Jin Wu,Zhanxin Yao,Shun-Qing Shen,Chao Niu,Ying Liu,Pengcheng Zhang,Quannian Wang,Jinhao Wang,Hua Li,Xi Wang,Xinxing Wang,Qingyang Dong
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6)
标识
DOI:10.1093/bib/bbad362
摘要

Microsatellite instability (MSI) is a hypermutator phenotype caused by DNA mismatch repair deficiency. MSI has been reported in various human cancers, particularly colorectal, gastric and endometrial cancers. MSI is a promising biomarker for cancer prognosis and immune checkpoint blockade immunotherapy. Several computational methods have been developed for MSI detection using DNA- or RNA-based approaches based on next-generation sequencing. Epigenetic mechanisms, such as DNA methylation, regulate gene expression and play critical roles in the development and progression of cancer. We here developed MSI-XGNN, a new computational framework for predicting MSI status using bulk RNA-sequencing and DNA methylation data. MSI-XGNN is an explainable deep learning model that combines a graph neural network (GNN) model to extract features from the gene-methylation probe network with a CatBoost model to classify MSI status. MSI-XGNN, which requires tumor-only samples, exhibited comparable performance with two well-known methods that require tumor-normal paired sequencing data, MSIsensor and MANTIS and better performance than several other tools. MSI-XGNN also showed good generalizability on independent validation datasets. MSI-XGNN identified six MSI markers consisting of four methylation probes (EPM2AIP1|MLH1:cg14598950, EPM2AIP1|MLH1:cg27331401, LNP1:cg05428436 and TSC22D2:cg15048832) and two genes (RPL22L1 and MSH4) constituting the optimal feature subset. All six markers were significantly associated with beneficial tumor microenvironment characteristics for immunotherapy, such as tumor mutation burden, neoantigens and immune checkpoint molecules such as programmed cell death-1 and cytotoxic T-lymphocyte antigen-4. Overall, our study provides a powerful and explainable deep learning model for predicting MSI status and identifying MSI markers that can potentially be used for clinical MSI evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gp发布了新的文献求助10
1秒前
Valky完成签到,获得积分10
2秒前
2秒前
奶昔发布了新的文献求助10
5秒前
6秒前
7秒前
Zzz_Carlos发布了新的文献求助10
11秒前
zjspidany发布了新的文献求助30
12秒前
陈一mo发布了新的文献求助10
15秒前
英姑应助开心夏真采纳,获得10
15秒前
16秒前
Ming完成签到,获得积分20
17秒前
阉太狼完成签到,获得积分10
18秒前
gp完成签到,获得积分10
18秒前
科研小兵兵完成签到,获得积分10
20秒前
21秒前
23秒前
24秒前
深水中的阳光完成签到,获得积分10
25秒前
Zzz_Carlos完成签到,获得积分10
27秒前
要开心发布了新的文献求助10
29秒前
科研通AI2S应助psg采纳,获得30
29秒前
吖牙发布了新的文献求助10
29秒前
丰富的寒蕾完成签到,获得积分10
30秒前
30秒前
一方通行完成签到 ,获得积分10
31秒前
31秒前
32秒前
且从容完成签到,获得积分10
32秒前
大个应助要开心采纳,获得10
35秒前
35秒前
飞飞飞发布了新的文献求助10
37秒前
judy发布了新的文献求助10
37秒前
Jessica发布了新的文献求助10
39秒前
大胆海冬完成签到,获得积分10
41秒前
44秒前
47秒前
48秒前
wang发布了新的文献求助10
53秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310962
求助须知:如何正确求助?哪些是违规求助? 2943713
关于积分的说明 8516191
捐赠科研通 2619029
什么是DOI,文献DOI怎么找? 1431813
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649752