A machine learning-assisted study on organic solvents in electrolytes for expanding the electrochemical stable window of zinc-ion batteries

电解质 电化学 电化学窗口 材料科学 溶剂 水溶液 工作(物理) 化学 机械工程 冶金 电极 工程类 有机化学 物理化学 离子电导率
作者
Guangsheng Xu,Yajuan Zhang,Ming Jiang,Jinliang Li,Hengchao Sun,Jiabao Li,Ting Lu,Chenglong Wang,Guangya Yang,Likun Pan
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:476: 146676-146676 被引量:14
标识
DOI:10.1016/j.cej.2023.146676
摘要

Currently, inherent deficiencies of water-based electrolytes, such as a narrow electrochemical stable window (ESW), lead to low operating voltage and insufficient energy density of zinc-ion batteries (ZIBs). Incorporating organic electrolytes into ZIBs is an effective strategy for expanding the ESW but the exploration on introducing organic solvent into zinc electrolyte is still scarce. In this work, the ESWs of 307 organic solvents in ZIBs were investigated assisted by machine learning (ML) methods. Four ML models were employed to predict the oxidation potentials (OPs) of organic solvents for zinc electrolytes. Among them, Gradient Boosting Regression (GBR) and Gaussian Process Regression (GPR) exhibit exceptional performance and achieve remarkable prediction results. Specifically, GBR model displays a highest R2 score of 0.905, an absolute error of 0.258 and an absolute percentage error of 8.30% on test set. The effect of selected features on the prediction results was investigated and the features with significant impact on the prediction of OP were summarized. ESWs (OPs) of six non-aqueous zinc electrolytes using three distinct organic solvents were measured by experimental methods and there is a notable agreement between measured ESW (OP) and the solvent OP computed by Density Functional Theory and ML models in general. Furthermore, Zn//Zn symmetrical batteries assembled with these electrolytes demonstrate remarkable cycling stability, showcasing their potential applications in ZIBs. This work develops ML models that can efficiently predict a large number of organic solvent OP for ZIBs, and provides a useful guidance for developing advanced non-aqueous and hybrid zinc electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助清爽太阳采纳,获得10
刚刚
所所应助BBC采纳,获得10
1秒前
学姐大喊大叫的家关注了科研通微信公众号
2秒前
mao完成签到,获得积分20
2秒前
跳跳虎发布了新的文献求助10
2秒前
2秒前
乐乐乐乐乐乐应助gluwater采纳,获得10
4秒前
7秒前
7秒前
彩色迎丝发布了新的文献求助20
9秒前
pikaka完成签到,获得积分10
9秒前
百里酚蓝完成签到 ,获得积分10
10秒前
熊i发布了新的文献求助10
10秒前
10秒前
虚拟的凝海完成签到,获得积分20
10秒前
10秒前
Saliya完成签到,获得积分10
11秒前
cccool发布了新的文献求助10
11秒前
忧虑的靖巧完成签到 ,获得积分10
11秒前
11秒前
倒背如流圆周率完成签到,获得积分10
12秒前
小二郎应助虚拟的凝海采纳,获得10
14秒前
欢呼的凌兰完成签到,获得积分10
15秒前
suno发布了新的文献求助10
16秒前
畅快访蕊发布了新的文献求助10
16秒前
16秒前
JamesPei应助hwezhu采纳,获得10
16秒前
keikeizi发布了新的文献求助10
16秒前
大龙哥886完成签到,获得积分10
16秒前
熊i完成签到,获得积分20
17秒前
坚强难摧完成签到,获得积分10
17秒前
18秒前
19秒前
20秒前
单薄纸飞机完成签到,获得积分10
22秒前
CipherSage应助逗号先生采纳,获得10
23秒前
lily88发布了新的文献求助10
24秒前
坚强难摧发布了新的文献求助10
24秒前
小猫最受发布了新的文献求助10
25秒前
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140205
求助须知:如何正确求助?哪些是违规求助? 2790982
关于积分的说明 7797336
捐赠科研通 2447358
什么是DOI,文献DOI怎么找? 1301860
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194