Physics-guided diagnosis framework for bridge health monitoring using raw vehicle accelerations

桥(图论) 背景(考古学) 结构健康监测 过程(计算) 鉴定(生物学) 原始数据 计算机科学 情态动词 机器学习 领域(数学分析) 工程类 人工智能 数据挖掘 结构工程 数学 医学 古生物学 数学分析 化学 植物 高分子化学 内科学 生物 程序设计语言 操作系统
作者
Yifu Lan,Zhenkun Li,Weiwei Lin
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:206: 110899-110899
标识
DOI:10.1016/j.ymssp.2023.110899
摘要

Damage detection of bridges using vibrations from a passing vehicle has received a lot of interest recently. Though non-modal parameter-based methods (e.g., data-driven approaches) have shown promising results in this context, their advancement towards a comprehensive and rigorous monitoring system is hampered by their overreliance on machine learning techniques. On this background, this paper proposes a novel automatic physics-guided diagnosis framework for bridge health monitoring utilizing only raw vehicle accelerations. First, numerical studies are conducted to investigate the relationship between vehicle time-domain signals and bridge damage, based on which a new damage index is proposed. At the same time, it also explores the identification of damage locations and proposes a location index. Second, a damage diagnosis framework, which consists of a data processing method and a physics-guided model, is designed to overcome deficiencies from a drive-by measurement and to automate the damage detection process. The proposed framework was validated using datasets acquired from laboratory experiments employing a scale vehicle model and a steel beam. The results affirmed the method's efficacy in damage indication, quantification, and localization. Moreover, the superiority of the proposed damage index and the rationale for the proposed physics-guided approach were also demonstrated through comparisons with machine learning-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助嗯啊啊啊啊采纳,获得10
刚刚
刚刚
简单应助欧子采纳,获得20
1秒前
1秒前
1秒前
eawea完成签到,获得积分10
2秒前
小二郎应助Kane采纳,获得10
2秒前
2秒前
达雨完成签到,获得积分10
3秒前
搜集达人应助忆之采纳,获得10
3秒前
3秒前
youxiu1112完成签到,获得积分10
3秒前
lll完成签到 ,获得积分10
4秒前
4秒前
研友_VZG7GZ应助Rason采纳,获得10
4秒前
4秒前
苏鑫完成签到,获得积分10
4秒前
浮游应助韭黄采纳,获得10
4秒前
Stella应助韭黄采纳,获得10
4秒前
谦让的含海应助韭黄采纳,获得10
4秒前
5秒前
5秒前
huahua发布了新的文献求助10
5秒前
绵马紫萁完成签到,获得积分10
6秒前
丘比特应助我到了啊采纳,获得10
6秒前
8秒前
AN发布了新的文献求助10
8秒前
可达燊发布了新的文献求助10
9秒前
9秒前
9秒前
mm完成签到,获得积分10
9秒前
上上签完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
Akim应助眼睛大的比巴卜采纳,获得10
10秒前
吴迪发布了新的文献求助10
10秒前
超级李包包完成签到,获得积分10
10秒前
ding应助热摩卡采纳,获得30
10秒前
vina完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577090
求助须知:如何正确求助?哪些是违规求助? 4662349
关于积分的说明 14741219
捐赠科研通 4602974
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495974
关于科研通互助平台的介绍 1465478