Physics-guided diagnosis framework for bridge health monitoring using raw vehicle accelerations

桥(图论) 背景(考古学) 结构健康监测 过程(计算) 鉴定(生物学) 原始数据 计算机科学 情态动词 机器学习 领域(数学分析) 工程类 人工智能 数据挖掘 结构工程 数学 医学 古生物学 数学分析 化学 植物 高分子化学 内科学 生物 程序设计语言 操作系统
作者
Yifu Lan,Zhenkun Li,Weiwei Lin
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:206: 110899-110899
标识
DOI:10.1016/j.ymssp.2023.110899
摘要

Damage detection of bridges using vibrations from a passing vehicle has received a lot of interest recently. Though non-modal parameter-based methods (e.g., data-driven approaches) have shown promising results in this context, their advancement towards a comprehensive and rigorous monitoring system is hampered by their overreliance on machine learning techniques. On this background, this paper proposes a novel automatic physics-guided diagnosis framework for bridge health monitoring utilizing only raw vehicle accelerations. First, numerical studies are conducted to investigate the relationship between vehicle time-domain signals and bridge damage, based on which a new damage index is proposed. At the same time, it also explores the identification of damage locations and proposes a location index. Second, a damage diagnosis framework, which consists of a data processing method and a physics-guided model, is designed to overcome deficiencies from a drive-by measurement and to automate the damage detection process. The proposed framework was validated using datasets acquired from laboratory experiments employing a scale vehicle model and a steel beam. The results affirmed the method's efficacy in damage indication, quantification, and localization. Moreover, the superiority of the proposed damage index and the rationale for the proposed physics-guided approach were also demonstrated through comparisons with machine learning-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
素雅发布了新的文献求助10
2秒前
3秒前
5秒前
7秒前
wwb完成签到,获得积分10
8秒前
一壶古酒应助wanglihong采纳,获得60
9秒前
9秒前
coster发布了新的文献求助10
10秒前
10秒前
玄轩发布了新的文献求助10
11秒前
12秒前
踏实的道消完成签到 ,获得积分10
14秒前
lfl发布了新的文献求助10
15秒前
刘丰发布了新的文献求助10
17秒前
20秒前
我是老大应助coster采纳,获得10
21秒前
fmwang完成签到,获得积分10
23秒前
jianlv发布了新的文献求助10
25秒前
高贵的尔蓝关注了科研通微信公众号
26秒前
26秒前
烟火还是永恒完成签到,获得积分10
28秒前
Charon发布了新的文献求助10
31秒前
34秒前
村霸懒洋洋完成签到,获得积分20
35秒前
arui完成签到,获得积分10
35秒前
ding应助Charon采纳,获得10
37秒前
coster完成签到,获得积分10
38秒前
neilphilosci完成签到 ,获得积分10
40秒前
40秒前
玄轩完成签到,获得积分10
43秒前
caleb完成签到,获得积分10
45秒前
wh雨发布了新的文献求助10
46秒前
gao发布了新的文献求助10
47秒前
所所应助lin采纳,获得10
50秒前
51秒前
51秒前
53秒前
简单幸福发布了新的文献求助10
54秒前
CipherSage应助单纯的爆米花采纳,获得10
55秒前
黑豆也完成签到,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558034
求助须知:如何正确求助?哪些是违规求助? 4642985
关于积分的说明 14670251
捐赠科研通 4584484
什么是DOI,文献DOI怎么找? 2514893
邀请新用户注册赠送积分活动 1489026
关于科研通互助平台的介绍 1459655