Dynamic hypergraph convolutional network for multimodal sentiment analysis

超图 计算机科学 成对比较 图形 理论计算机科学 模态(人机交互) 人工智能 仿射变换 数学 离散数学 纯数学
作者
Jian Huang,Yuanyuan Pu,Dongming Zhou,Jinde Cao,Jinjing Gu,Zhengpeng Zhao,Dan Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:565: 126992-126992 被引量:4
标识
DOI:10.1016/j.neucom.2023.126992
摘要

Multimodal sentiment analysis (MSA) aims to detect the sentiments from language (text), audio, and visual (facial expressions) modalities. The main challenge in MSA is how to efficiently model intra-modality and inter-modality dynamics. With the advent of graph convolution network (GCN), graph-based models are proposed to solve the challenge. However, general graphs contain only two nodes per edge, which limits the exploitation of high-order interactions. Moreover, current graph-based models mainly aggregate the features of each node during fusion, while the features of connected edges are not well mined. In this paper, we introduce dynamic hypergraph convolution networks to MSA for the first time and propose a Multimodal Dynamic Hypergraph Network (MDH) to learn intra- and inter-modality dynamics. Hypergraphs provide a natural approach to capture transcendental pairwise relations, and their potential for MSA remains unexplored. MDH mainly consists of three components: Unimodal Encoder, Dynamic Hypergraph Enhancement Network (DHEN), and HyperFusion module. Specifically, DHEN is composed of Cross-modal Affine, Hypergraph Construction, and Hypergraph Aggregation modules. As for the intra-modality dynamics, MDH utilizes Hypergraph Construction and Aggregation modules to model the interactions within time steps for each modality. As for the inter-modality dynamics, MDH implements Cross-modal Affine and HyperFusion modules to learn the relationships of the modalities. In addition, multi-task learning has been implemented to optimize the learning process for multimodal tasks. Experiments show that MDH outperforms graph-based models on CMU-MOSI and CMU-MOSEI datasets, as well as obtains new state-of-the-art results on CH-SIMS dataset. Furthermore, we conduct external experiments to explore the effectiveness of MDH and the effect of model depth with different graph networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiayouYi完成签到,获得积分10
1秒前
完美世界应助quanjia采纳,获得10
2秒前
科研通AI2S应助darmy采纳,获得10
2秒前
2秒前
3秒前
刘佳完成签到 ,获得积分10
5秒前
萧水白应助追梦大鹏采纳,获得20
7秒前
Flyzhang完成签到,获得积分10
8秒前
刘相君完成签到 ,获得积分10
8秒前
Hello应助dandelionshun采纳,获得10
8秒前
哈哈2022发布了新的文献求助10
9秒前
思源应助戈壁滩的鱼采纳,获得10
11秒前
自由初夏发布了新的文献求助20
15秒前
15秒前
Aoren完成签到,获得积分10
16秒前
快快跑咯发布了新的文献求助10
18秒前
18秒前
Singularity应助巫马小霜采纳,获得20
19秒前
dww发布了新的文献求助10
19秒前
DE完成签到,获得积分20
21秒前
ghost发布了新的文献求助10
21秒前
852应助布洛芬采纳,获得10
21秒前
啦啦啦发布了新的文献求助10
24秒前
阿三完成签到 ,获得积分10
27秒前
wanci应助科研通管家采纳,获得10
28秒前
共享精神应助科研通管家采纳,获得30
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
28秒前
泠泠泠萘应助科研通管家采纳,获得10
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
扶石完成签到,获得积分10
29秒前
29秒前
来都来了完成签到 ,获得积分10
29秒前
30秒前
CodeCraft应助Cwx2020采纳,获得10
31秒前
Orange应助啦啦啦采纳,获得10
33秒前
wangayting发布了新的文献求助30
33秒前
活力元龙完成签到 ,获得积分10
34秒前
34秒前
大力的飞莲完成签到,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023