Dynamic hypergraph convolutional network for multimodal sentiment analysis

超图 计算机科学 成对比较 图形 理论计算机科学 模态(人机交互) 人工智能 仿射变换 数学 离散数学 纯数学
作者
Jian Huang,Yuanyuan Pu,Dongming Zhou,Jinde Cao,Jinjing Gu,Zhengpeng Zhao,Dan Xu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:565: 126992-126992 被引量:11
标识
DOI:10.1016/j.neucom.2023.126992
摘要

Multimodal sentiment analysis (MSA) aims to detect the sentiments from language (text), audio, and visual (facial expressions) modalities. The main challenge in MSA is how to efficiently model intra-modality and inter-modality dynamics. With the advent of graph convolution network (GCN), graph-based models are proposed to solve the challenge. However, general graphs contain only two nodes per edge, which limits the exploitation of high-order interactions. Moreover, current graph-based models mainly aggregate the features of each node during fusion, while the features of connected edges are not well mined. In this paper, we introduce dynamic hypergraph convolution networks to MSA for the first time and propose a Multimodal Dynamic Hypergraph Network (MDH) to learn intra- and inter-modality dynamics. Hypergraphs provide a natural approach to capture transcendental pairwise relations, and their potential for MSA remains unexplored. MDH mainly consists of three components: Unimodal Encoder, Dynamic Hypergraph Enhancement Network (DHEN), and HyperFusion module. Specifically, DHEN is composed of Cross-modal Affine, Hypergraph Construction, and Hypergraph Aggregation modules. As for the intra-modality dynamics, MDH utilizes Hypergraph Construction and Aggregation modules to model the interactions within time steps for each modality. As for the inter-modality dynamics, MDH implements Cross-modal Affine and HyperFusion modules to learn the relationships of the modalities. In addition, multi-task learning has been implemented to optimize the learning process for multimodal tasks. Experiments show that MDH outperforms graph-based models on CMU-MOSI and CMU-MOSEI datasets, as well as obtains new state-of-the-art results on CH-SIMS dataset. Furthermore, we conduct external experiments to explore the effectiveness of MDH and the effect of model depth with different graph networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
新野发布了新的文献求助10
1秒前
2秒前
JamesPei应助FOLY采纳,获得10
2秒前
ypx完成签到,获得积分10
2秒前
sibo完成签到,获得积分10
2秒前
静不净发布了新的文献求助10
3秒前
DENG完成签到,获得积分10
3秒前
3秒前
科研通AI5应助fff采纳,获得10
3秒前
4秒前
爆米花应助悲凉的溪流采纳,获得10
4秒前
4秒前
persist发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI5应助机灵冰珍采纳,获得10
5秒前
5秒前
脑洞疼应助无心的天薇采纳,获得10
6秒前
6秒前
wuwei发布了新的文献求助10
7秒前
ning发布了新的文献求助10
8秒前
晴天完成签到 ,获得积分10
8秒前
耍酷擎发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
吐丝麵包发布了新的文献求助10
9秒前
温乘云完成签到,获得积分10
9秒前
嚭嚭发布了新的文献求助10
9秒前
10秒前
maningtian1发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
华仔应助邓代容采纳,获得10
11秒前
12秒前
12秒前
yuuuuuuer发布了新的文献求助10
12秒前
杨子航完成签到,获得积分10
12秒前
Akim应助车 干采纳,获得10
13秒前
sundial发布了新的文献求助10
13秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771