Dynamic hypergraph convolutional network for multimodal sentiment analysis

超图 计算机科学 成对比较 图形 理论计算机科学 模态(人机交互) 人工智能 仿射变换 数学 离散数学 纯数学
作者
Jian Huang,Yuanyuan Pu,Dongming Zhou,Jinde Cao,Jinjing Gu,Zhengpeng Zhao,Dan Xu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:565: 126992-126992 被引量:11
标识
DOI:10.1016/j.neucom.2023.126992
摘要

Multimodal sentiment analysis (MSA) aims to detect the sentiments from language (text), audio, and visual (facial expressions) modalities. The main challenge in MSA is how to efficiently model intra-modality and inter-modality dynamics. With the advent of graph convolution network (GCN), graph-based models are proposed to solve the challenge. However, general graphs contain only two nodes per edge, which limits the exploitation of high-order interactions. Moreover, current graph-based models mainly aggregate the features of each node during fusion, while the features of connected edges are not well mined. In this paper, we introduce dynamic hypergraph convolution networks to MSA for the first time and propose a Multimodal Dynamic Hypergraph Network (MDH) to learn intra- and inter-modality dynamics. Hypergraphs provide a natural approach to capture transcendental pairwise relations, and their potential for MSA remains unexplored. MDH mainly consists of three components: Unimodal Encoder, Dynamic Hypergraph Enhancement Network (DHEN), and HyperFusion module. Specifically, DHEN is composed of Cross-modal Affine, Hypergraph Construction, and Hypergraph Aggregation modules. As for the intra-modality dynamics, MDH utilizes Hypergraph Construction and Aggregation modules to model the interactions within time steps for each modality. As for the inter-modality dynamics, MDH implements Cross-modal Affine and HyperFusion modules to learn the relationships of the modalities. In addition, multi-task learning has been implemented to optimize the learning process for multimodal tasks. Experiments show that MDH outperforms graph-based models on CMU-MOSI and CMU-MOSEI datasets, as well as obtains new state-of-the-art results on CH-SIMS dataset. Furthermore, we conduct external experiments to explore the effectiveness of MDH and the effect of model depth with different graph networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yxy303256651完成签到,获得积分10
1秒前
VitoLi发布了新的文献求助10
1秒前
善学以致用应助多巴不胺采纳,获得10
1秒前
owoow发布了新的文献求助10
1秒前
2秒前
Aura完成签到,获得积分10
2秒前
Abc123关注了科研通微信公众号
3秒前
狗子爱吃桃桃完成签到 ,获得积分10
3秒前
田様应助索兰黛尔采纳,获得10
4秒前
Ava应助哭泣的凡英采纳,获得10
5秒前
Wangjj发布了新的文献求助10
5秒前
5秒前
王豆豆发布了新的文献求助30
6秒前
单薄咖啡豆完成签到,获得积分10
7秒前
乐乐应助xue采纳,获得10
8秒前
xucheng发布了新的文献求助10
9秒前
后知后觉完成签到,获得积分10
9秒前
10秒前
louise发布了新的文献求助10
12秒前
13秒前
慕青应助欣喜机器猫采纳,获得10
14秒前
Rondab应助帅气的宛凝采纳,获得10
15秒前
郭子仪发布了新的文献求助10
15秒前
后知后觉发布了新的文献求助10
15秒前
16秒前
MchemG应助eason采纳,获得30
16秒前
18秒前
18秒前
SciGPT应助Dr bao采纳,获得10
18秒前
Jasper应助水果咔咔咔采纳,获得10
19秒前
搞怪尔曼完成签到,获得积分10
19秒前
Abc123发布了新的文献求助30
19秒前
20250702发布了新的文献求助10
20秒前
李健应助owoow采纳,获得10
20秒前
FashionBoy应助owoow采纳,获得10
20秒前
lgx完成签到,获得积分10
22秒前
博修发布了新的文献求助10
24秒前
郑俊青完成签到,获得积分10
24秒前
25秒前
郭子仪完成签到,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967809
求助须知:如何正确求助?哪些是违规求助? 3512946
关于积分的说明 11165553
捐赠科研通 3247977
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578