Identifying actionable druggable targets for breast cancer: Mendelian randomization and population-based analyses

可药性 孟德尔随机化 乳腺癌 医学 人口 肿瘤科 计算生物学 生物信息学 癌症 生物 遗传学 基因型 基因 环境卫生 遗传变异
作者
Naiqi Zhang,Yanni Li,Jan Sundquist,Kristina Sundquist,Jianguang Ji
出处
期刊:EBioMedicine [Elsevier]
卷期号:98: 104859-104859 被引量:15
标识
DOI:10.1016/j.ebiom.2023.104859
摘要

BackgroundDrug repurposing provides a cost-effective approach to address the need for breast cancer prevention and therapeutics. We aimed to identify actionable druggable targets using Mendelian randomization (MR) and then validate the candidate drugs using population-based analyses.MethodsWe identified genetic instruments for 1406 actionable targets of approved non-oncological drugs based on gene expression, DNA methylation, and protein expression quantitative trait loci (eQTL, mQTL, and pQTL, respectively). Genome-wide association study (GWAS) summary statistics were obtained from the Breast Cancer Association Consortium (122,977 cases, 105,974 controls). We further conducted a nested case–control study using data retrieved from Swedish registers to validate the candidate drugs that were identified from MR analyses.FindingsWe identified six significant MR associations with gene expression levels (TUBB, MDM2, CSK, ULK3, MC1R and KCNN4) and two significant associations with gene methylation levels across 21 CpG islands (RPS23 and MAPT). Results from the nested case–control study showed that the use of raloxifene (targeting MAPT) was associated with 35% reduced breast cancer risk (odds ratio, OR, 0.65; 95% confidence interval, CI, 0.51–0.83). However, usage of estradiol, tolterodine, and nitrofurantoin (also targeting MAPT) was associated with increased breast cancer risk, with adjusted ORs and 95% CI of 1.10 (1.07–1.13), 1.16 (1.09–1.24), and 1.09 (1.05–1.13), respectively. The effect of raloxifene and nitrofurantoin lost significance in further validation analyses using active-comparator and new-user design.InterpretationThis large-scale MR analysis, combined with population-based validation, identified eight druggable target genes for breast cancer and suggested that raloxifene is an effective chemoprevention against breast cancer.FundingSwedish Research Council, Cancerfonden, Crafoordska Stiftelsen, Allmänna Sjukhusets i Malmö Stiftelsen för bekämpande av cancer, 111 Project and MAS cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊嚯完成签到,获得积分10
刚刚
FashionBoy应助慕子采纳,获得10
1秒前
1秒前
1秒前
L龙发布了新的文献求助10
2秒前
2秒前
善学以致用应助sunwending采纳,获得10
2秒前
东郭秋凌完成签到,获得积分10
2秒前
胤宸完成签到,获得积分10
3秒前
4秒前
4秒前
hohokuz完成签到,获得积分20
4秒前
一切顺遂应助Adian采纳,获得100
4秒前
4秒前
April发布了新的文献求助20
5秒前
Huaiman发布了新的文献求助10
6秒前
科研通AI5应助转角一起走采纳,获得20
6秒前
蛋炒饭完成签到,获得积分10
7秒前
执着完成签到,获得积分10
7秒前
研友_ED5GK发布了新的文献求助10
7秒前
8秒前
绿麦盲区完成签到,获得积分10
8秒前
Yvonne发布了新的文献求助10
8秒前
9秒前
9秒前
minghanl完成签到,获得积分10
10秒前
zhaomr发布了新的文献求助10
10秒前
科目三应助pbf采纳,获得20
11秒前
11秒前
11秒前
same完成签到,获得积分10
12秒前
科研通AI5应助俭朴夜雪采纳,获得30
12秒前
读研好难发布了新的文献求助10
13秒前
Adian完成签到,获得积分10
14秒前
Huaiman完成签到,获得积分10
14秒前
OvO完成签到,获得积分10
14秒前
expuery完成签到,获得积分10
14秒前
sunwending发布了新的文献求助10
14秒前
蒋时晏应助Lam采纳,获得30
15秒前
充电宝应助西子阳采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762