Identifying actionable druggable targets for breast cancer: Mendelian randomization and population-based analyses

可药性 孟德尔随机化 乳腺癌 医学 人口 肿瘤科 计算生物学 生物信息学 癌症 生物 遗传学 基因型 基因 环境卫生 遗传变异
作者
Naiqi Zhang,Yanni Li,Jan Sundquist,Kristina Sundquist,Jianguang Ji
出处
期刊:EBioMedicine [Elsevier BV]
卷期号:98: 104859-104859 被引量:15
标识
DOI:10.1016/j.ebiom.2023.104859
摘要

BackgroundDrug repurposing provides a cost-effective approach to address the need for breast cancer prevention and therapeutics. We aimed to identify actionable druggable targets using Mendelian randomization (MR) and then validate the candidate drugs using population-based analyses.MethodsWe identified genetic instruments for 1406 actionable targets of approved non-oncological drugs based on gene expression, DNA methylation, and protein expression quantitative trait loci (eQTL, mQTL, and pQTL, respectively). Genome-wide association study (GWAS) summary statistics were obtained from the Breast Cancer Association Consortium (122,977 cases, 105,974 controls). We further conducted a nested case–control study using data retrieved from Swedish registers to validate the candidate drugs that were identified from MR analyses.FindingsWe identified six significant MR associations with gene expression levels (TUBB, MDM2, CSK, ULK3, MC1R and KCNN4) and two significant associations with gene methylation levels across 21 CpG islands (RPS23 and MAPT). Results from the nested case–control study showed that the use of raloxifene (targeting MAPT) was associated with 35% reduced breast cancer risk (odds ratio, OR, 0.65; 95% confidence interval, CI, 0.51–0.83). However, usage of estradiol, tolterodine, and nitrofurantoin (also targeting MAPT) was associated with increased breast cancer risk, with adjusted ORs and 95% CI of 1.10 (1.07–1.13), 1.16 (1.09–1.24), and 1.09 (1.05–1.13), respectively. The effect of raloxifene and nitrofurantoin lost significance in further validation analyses using active-comparator and new-user design.InterpretationThis large-scale MR analysis, combined with population-based validation, identified eight druggable target genes for breast cancer and suggested that raloxifene is an effective chemoprevention against breast cancer.FundingSwedish Research Council, Cancerfonden, Crafoordska Stiftelsen, Allmänna Sjukhusets i Malmö Stiftelsen för bekämpande av cancer, 111 Project and MAS cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ainhoa完成签到,获得积分10
1秒前
独孤幻月96应助甜甜亦丝采纳,获得10
1秒前
哆啦A涵发布了新的文献求助10
2秒前
3秒前
4秒前
老实用户完成签到 ,获得积分10
5秒前
Sakura完成签到 ,获得积分10
5秒前
hui发布了新的文献求助10
5秒前
满意的迎南完成签到 ,获得积分10
6秒前
苗条小霸王完成签到,获得积分10
6秒前
康康发布了新的文献求助10
6秒前
7秒前
粗犷的世平完成签到,获得积分10
8秒前
小坨坨发布了新的文献求助10
8秒前
完美世界应助12采纳,获得10
9秒前
个性的紫菜应助小黄豆采纳,获得70
9秒前
雨寒发布了新的文献求助50
10秒前
威武的水之完成签到,获得积分10
10秒前
沉潜完成签到,获得积分10
11秒前
demo完成签到,获得积分10
11秒前
一包辣条发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
14秒前
14秒前
pomelost完成签到,获得积分10
14秒前
炙热ding完成签到,获得积分10
16秒前
16秒前
Hello应助康康采纳,获得10
17秒前
17秒前
18秒前
tiantu发布了新的文献求助10
18秒前
18秒前
SJW123完成签到 ,获得积分10
18秒前
eternity136发布了新的文献求助10
18秒前
Vivian发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403