Transformer-Based Multimodal Emotional Perception for Dynamic Facial Expression Recognition in the Wild

计算机科学 编码器 人工智能 变压器 稳健性(进化) 面部表情 模式 语音识别 模式识别(心理学) 计算机视觉 工程类 基因 操作系统 生物化学 电气工程 社会学 社会科学 电压 化学
作者
Xiaoqin Zhang,Min Li,Sheng Lin,Hang Xu,Guobao Xiao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 3192-3203 被引量:16
标识
DOI:10.1109/tcsvt.2023.3312858
摘要

Dynamic expression recognition in the wild is a challenging task due to various obstacles, including low light condition, non-positive face, and face occlusion. Purely vision-based approaches may not suffice to accurately capture the complexity of human emotions. To address this issue, we propose a Transformer-based Multimodal Emotional Perception (T-MEP) framework capable of effectively extracting multimodal information and achieving significant augmentation. Specifically, we design three transformer-based encoders to extract modality-specific features from audio, image, and text sequences, respectively. Each encoder is carefully designed to maximize its adaptation to the corresponding modality. In addition, we design a transformer-based multimodal information fusion module to model cross-modal representation among these modalities. The unique combination of self-attention and cross-attention in this module enhances the robustness of output-integrated features in encoding emotion. By mapping the information from audio and textual features to the latent space of visual features, this module aligns the semantics of the three modalities for cross-modal information augmentation. Finally, we evaluate our method on three popular datasets (MAFW, DFEW, and AFEW) through extensive experiments, which demonstrate its state-of-the-art performance. This research offers a promising direction for future studies to improve emotion recognition accuracy by exploiting the power of multimodal features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liugm完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
3秒前
王哈哈完成签到,获得积分10
4秒前
momo发布了新的文献求助10
5秒前
难过太君发布了新的文献求助10
5秒前
6秒前
赘婿应助爱听歌的万言采纳,获得10
6秒前
璇子发布了新的文献求助10
6秒前
御风完成签到,获得积分10
6秒前
小样完成签到,获得积分10
7秒前
柒辞完成签到,获得积分10
7秒前
7秒前
标致小珍发布了新的文献求助10
8秒前
777发布了新的文献求助10
9秒前
9秒前
贪玩蓝月发布了新的文献求助10
10秒前
文艺的胖虎完成签到 ,获得积分10
10秒前
11秒前
完美世界应助科研通管家采纳,获得30
14秒前
彭于彦祖应助科研通管家采纳,获得20
14秒前
EasyNan应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
8R60d8应助科研通管家采纳,获得20
14秒前
SYX完成签到 ,获得积分10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
黄bb应助科研通管家采纳,获得10
14秒前
zhang发布了新的文献求助10
14秒前
李健应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
15秒前
wkjfh应助科研通管家采纳,获得10
15秒前
研友_LJGpan应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
8R60d8应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427