重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Multimodality Driven Impedance-Based Sim2Real Transfer Learning for Robotic Multiple Peg-in-Hole Assembly

计算机科学 强化学习 对象(语法) 任务(项目管理) 机器人 人工智能 计算机工程 分布式计算 系统工程 工程类
作者
Wenkai Chen,Chao Zeng,Hongzhuo Liang,Fuchun Sun,Jianwei Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (5): 2784-2797 被引量:3
标识
DOI:10.1109/tcyb.2023.3310505
摘要

Robotic rigid contact-rich manipulation in an unstructured dynamic environment requires an effective resolution for smart manufacturing. As the most common use case for the intelligence industry, a lot of studies based on reinforcement learning (RL) algorithms have been conducted to improve the performances of single peg-in-hole assembly. However, existing RL methods are difficult to apply to multiple peg-in-hole issues due to more complicated geometric and physical constraints. In addition, previously limited solutions for multiple peg-in-hole assembly are hard to transfer into real industrial scenarios flexibly. To effectively address these issues, this work designs a novel and more challenging multiple peg-in-hole assembly setup by using the advantage of the Industrial Metaverse. We propose a detailed solution scheme to solve this task. Specifically, multiple modalities, including vision, proprioception, and force/torque, are learned as compact representations to account for the complexity and uncertainties and improve the sample efficiency. Furthermore, RL is used in the simulation to train the policy, and the learned policy is transferred to the real world without extra exploration. Domain randomization and impedance control are embedded into the policy to narrow the gap between simulation and reality. Evaluation results demonstrate the effectiveness of the proposed solution, showcasing successful multiple peg-in-hole assembly and generalization across different object shapes in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
的卢小马完成签到 ,获得积分10
刚刚
mescal发布了新的文献求助10
刚刚
刚刚
CipherSage应助liuy03采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
王某发布了新的文献求助10
1秒前
2秒前
科研通AI6应助lilili2060采纳,获得10
2秒前
浮游应助AaaCK_Claire11采纳,获得10
2秒前
一块巧克力完成签到,获得积分20
2秒前
尖尖完成签到,获得积分10
2秒前
3秒前
orixero应助鱼我所厌也采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
十一发布了新的文献求助10
4秒前
顾矜应助Cassie采纳,获得10
4秒前
科研通AI6应助等待的凝芙采纳,获得10
4秒前
曹中明发布了新的文献求助30
4秒前
安云野发布了新的文献求助10
4秒前
jane920109发布了新的文献求助10
5秒前
刘大晶完成签到,获得积分10
5秒前
科研通AI6应助可耐的靖采纳,获得10
5秒前
5秒前
风痕发布了新的文献求助10
5秒前
5秒前
DDD发布了新的文献求助10
6秒前
桐桐应助hua采纳,获得10
6秒前
6秒前
青夏完成签到,获得积分10
7秒前
app发布了新的文献求助10
7秒前
肥肥发布了新的文献求助10
7秒前
乐乐应助wlg采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466621
求助须知:如何正确求助?哪些是违规求助? 4570468
关于积分的说明 14325556
捐赠科研通 4497017
什么是DOI,文献DOI怎么找? 2463674
邀请新用户注册赠送积分活动 1452626
关于科研通互助平台的介绍 1427590