Multimodality Driven Impedance-Based Sim2Real Transfer Learning for Robotic Multiple Peg-in-Hole Assembly

计算机科学 强化学习 对象(语法) 任务(项目管理) 机器人 人工智能 计算机工程 分布式计算 系统工程 工程类
作者
Wenkai Chen,Chao Zeng,Hongzhuo Liang,Fuchun Sun,Jianwei Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (5): 2784-2797 被引量:3
标识
DOI:10.1109/tcyb.2023.3310505
摘要

Robotic rigid contact-rich manipulation in an unstructured dynamic environment requires an effective resolution for smart manufacturing. As the most common use case for the intelligence industry, a lot of studies based on reinforcement learning (RL) algorithms have been conducted to improve the performances of single peg-in-hole assembly. However, existing RL methods are difficult to apply to multiple peg-in-hole issues due to more complicated geometric and physical constraints. In addition, previously limited solutions for multiple peg-in-hole assembly are hard to transfer into real industrial scenarios flexibly. To effectively address these issues, this work designs a novel and more challenging multiple peg-in-hole assembly setup by using the advantage of the Industrial Metaverse. We propose a detailed solution scheme to solve this task. Specifically, multiple modalities, including vision, proprioception, and force/torque, are learned as compact representations to account for the complexity and uncertainties and improve the sample efficiency. Furthermore, RL is used in the simulation to train the policy, and the learned policy is transferred to the real world without extra exploration. Domain randomization and impedance control are embedded into the policy to narrow the gap between simulation and reality. Evaluation results demonstrate the effectiveness of the proposed solution, showcasing successful multiple peg-in-hole assembly and generalization across different object shapes in real-world scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吉以寒完成签到,获得积分10
刚刚
tzj发布了新的文献求助10
刚刚
王嘉鑫完成签到,获得积分10
1秒前
orixero应助leoo采纳,获得10
1秒前
那地方完成签到,获得积分10
2秒前
赘婿应助谦让依云采纳,获得10
2秒前
xiaosi完成签到,获得积分10
2秒前
2秒前
沉默的涵雁完成签到,获得积分20
6秒前
8秒前
轻松玫瑰发布了新的文献求助10
8秒前
一年半太久只争朝夕完成签到,获得积分10
9秒前
10秒前
11秒前
yuminger完成签到 ,获得积分10
11秒前
leoo发布了新的文献求助10
12秒前
12秒前
15秒前
汤健发布了新的文献求助10
16秒前
16秒前
轻松玫瑰完成签到,获得积分20
19秒前
平常亦凝完成签到 ,获得积分10
21秒前
谦让依云发布了新的文献求助10
22秒前
22秒前
lin完成签到,获得积分10
23秒前
酷波er应助卡卡采纳,获得10
24秒前
123关闭了123文献求助
24秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
Dobrzs发布了新的文献求助10
25秒前
25秒前
尊敬的夏槐完成签到,获得积分10
25秒前
XLH发布了新的文献求助10
26秒前
26秒前
26秒前
Hello应助莫若舞采纳,获得10
28秒前
完美世界应助arniu2008采纳,获得10
29秒前
尘扬完成签到,获得积分10
30秒前
30秒前
sunrise_99完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604088
求助须知:如何正确求助?哪些是违规求助? 4688919
关于积分的说明 14857074
捐赠科研通 4696569
什么是DOI,文献DOI怎么找? 2541150
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851