Consumer behavior analysis based on Internet of Things platform and the development of precision marketing strategy for fresh food e-commerce

计算机科学 聚类分析 鉴定(生物学) 市场细分 分类 消费者行为 互联网 产品(数学) 数据科学 营销 数据挖掘 万维网 机器学习 人工智能 业务 植物 几何学 数学 生物
作者
Mengmeng Zhang
出处
期刊:PeerJ [PeerJ]
卷期号:9: e1531-e1531 被引量:6
标识
DOI:10.7717/peerj-cs.1531
摘要

The traditional approach to e-commerce marketing encounters challenges in effectively extracting and utilizing user data, as well as analyzing and targeting specific user segments. This manuscript aims to address these limitations by proposing the establishment of a consumer behavior analysis system based on an Internet of Things (IoT) platform. The system harnesses the potential of radio frequency identification devices (RFID) technology for product identification encoding, thus facilitating the monitoring of product sales processes. To categorize consumers, the system incorporates a k-means algorithm within its architectural framework. Furthermore, a similarity metric is employed to evaluate the gathered consumption information and refine the selection strategy for initial clustering centers. The proposed methodology is subjected to rigorous testing, revealing its effectiveness in resolving the issue of insufficient differentiation between customer categories after clustering. Across varying values of k, the average false recognition rate experiences a notable reduction of 20.6%. The system consistently demonstrates rapid throughput and minimal overall latency, boasting an impressive processing time of merely 2 ms, thereby signifying its exceptional concurrent processing capability. Through the implementation of the proposed system, the opportunity for further target market segmentation arises, enabling the establishment of core market positioning and the formulation of distinct and precise marketing strategies tailored to diverse consumer cohorts. This pioneering approach introduces an innovative and efficient methodology that e-commerce enterprises can embrace to amplify their marketing endeavors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Crazy_Runner发布了新的文献求助10
1秒前
李爱卿发布了新的文献求助20
1秒前
Ryun完成签到,获得积分10
1秒前
1秒前
slyhhk完成签到,获得积分20
2秒前
科研通AI2S应助sada采纳,获得10
3秒前
5秒前
W23发布了新的文献求助10
6秒前
萋萋完成签到,获得积分10
8秒前
9秒前
Zhu给Zhu的求助进行了留言
10秒前
12秒前
科目三应助myn1990采纳,获得10
12秒前
脑洞疼应助Jessie采纳,获得10
13秒前
gongman发布了新的文献求助10
14秒前
15秒前
萋萋发布了新的文献求助10
16秒前
16秒前
赘婿应助Yael采纳,获得10
17秒前
18秒前
超级的煎饼完成签到,获得积分10
18秒前
18秒前
烟花应助slyhhk采纳,获得30
18秒前
舒适可乐关注了科研通微信公众号
20秒前
暴发户完成签到,获得积分10
20秒前
22秒前
忙碌的数学人完成签到,获得积分10
22秒前
ltxinanjiao发布了新的文献求助10
23秒前
Joyce完成签到,获得积分10
24秒前
得不到完成签到 ,获得积分10
24秒前
彪壮的一曲完成签到 ,获得积分20
24秒前
wxt完成签到 ,获得积分10
25秒前
XXXX_发布了新的文献求助10
28秒前
调研昵称发布了新的文献求助10
29秒前
ttracc完成签到 ,获得积分10
29秒前
彭于晏应助发仔采纳,获得10
31秒前
劲秉应助科研通管家采纳,获得10
32秒前
小二郎应助科研通管家采纳,获得10
32秒前
pluto应助科研通管家采纳,获得10
32秒前
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299776
求助须知:如何正确求助?哪些是违规求助? 2934644
关于积分的说明 8470036
捐赠科研通 2608208
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574