Parameter determination of anisotropic yield function using neural network-based indentation plastometry

缩进 材料科学 人工神经网络 各向异性 结构工程 成形性 产量(工程) 硬化(计算) 拉伸试验 极限抗拉强度 有限元法 复合材料 计算机科学 工程类 人工智能 光学 物理 图层(电子)
作者
Kyeongjae Jeong,Kyungyul Lee,Dongil Kwon,Myoung‐Gyu Lee,Heung Nam Han
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:263: 108776-108776 被引量:4
标识
DOI:10.1016/j.ijmecsci.2023.108776
摘要

Understanding the impact of plastic anisotropy on the formability of sheet metals is crucial for their industrial application and high-precision forming simulation. Existing multiple uniaxial tensile tests for measuring the plastic flow of anisotropic materials, however, are costly, time-consuming, and destructive. Therefore, it is more efficient to focus on indentation plastometry, a simple, nondestructive test that can quickly extract tensile properties. The objective of this work is to directly derive the parameters of the advanced Poly6 yield criterion and hardening, which describes strong plastic anisotropy, using indentation plastometry basd on a neural network (NN) system. The identification process for these parameters through conventional tensile tests is inherently complex, thereby determining the parameters directly from indentation data presents an unprecedented challenge. We trained NNs using a database generated from verified finite element (FE) simulations of spherical indentations. To systematically iterate these FE simulations, we designed a strategy generating a set of input anisotropic parameters that ensure the convexity of the yield function. We considered the radial and vertical displacement fields around the indentation mark along with the load-depth curve as indentation responses. Through a comprehensive analysis of the correlation between displacement profiles, we have proposed an optimal feature extraction method for NN training. The developed FE-NN model was evaluated by comparing the predicted parameters from the indentation responses of the target materials with those measured from tensile tests. These parameters were expressed as the yield locus and directional properties. The results demonstrated that the FE-NN modeling approach is robust and can accurately capture the anisotropic plastic flow from indentation responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wei发布了新的文献求助50
刚刚
1秒前
2秒前
sunwen发布了新的文献求助10
2秒前
3秒前
4秒前
北城完成签到,获得积分10
5秒前
十三完成签到 ,获得积分10
6秒前
打打应助傲寒采纳,获得10
6秒前
小李吃小孩完成签到,获得积分10
6秒前
含蓄大雁完成签到,获得积分10
6秒前
7秒前
Livrik发布了新的文献求助10
8秒前
卢敏明发布了新的文献求助10
8秒前
李健应助俏皮的白柏采纳,获得10
9秒前
9秒前
很好关注了科研通微信公众号
10秒前
10秒前
11秒前
研友_VZG7GZ应助九月采纳,获得10
12秒前
TTm关注了科研通微信公众号
12秒前
13秒前
13秒前
顾矜应助lixiaolu采纳,获得10
14秒前
liu发布了新的文献求助10
14秒前
15秒前
Orange应助光亮嵩采纳,获得10
15秒前
16秒前
18秒前
ANmin发布了新的文献求助10
18秒前
19秒前
21秒前
21秒前
22秒前
23秒前
要减肥的寻琴完成签到,获得积分10
23秒前
changaipei完成签到,获得积分10
23秒前
24秒前
Renee完成签到,获得积分10
24秒前
lll发布了新的文献求助20
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035