Parameter determination of anisotropic yield function using neural network-based indentation plastometry

缩进 材料科学 人工神经网络 各向异性 结构工程 成形性 产量(工程) 硬化(计算) 拉伸试验 极限抗拉强度 有限元法 复合材料 计算机科学 工程类 人工智能 光学 物理 图层(电子)
作者
Kyeongjae Jeong,Kyungyul Lee,Dongil Kwon,Myoung‐Gyu Lee,Heung Nam Han
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:263: 108776-108776 被引量:4
标识
DOI:10.1016/j.ijmecsci.2023.108776
摘要

Understanding the impact of plastic anisotropy on the formability of sheet metals is crucial for their industrial application and high-precision forming simulation. Existing multiple uniaxial tensile tests for measuring the plastic flow of anisotropic materials, however, are costly, time-consuming, and destructive. Therefore, it is more efficient to focus on indentation plastometry, a simple, nondestructive test that can quickly extract tensile properties. The objective of this work is to directly derive the parameters of the advanced Poly6 yield criterion and hardening, which describes strong plastic anisotropy, using indentation plastometry basd on a neural network (NN) system. The identification process for these parameters through conventional tensile tests is inherently complex, thereby determining the parameters directly from indentation data presents an unprecedented challenge. We trained NNs using a database generated from verified finite element (FE) simulations of spherical indentations. To systematically iterate these FE simulations, we designed a strategy generating a set of input anisotropic parameters that ensure the convexity of the yield function. We considered the radial and vertical displacement fields around the indentation mark along with the load-depth curve as indentation responses. Through a comprehensive analysis of the correlation between displacement profiles, we have proposed an optimal feature extraction method for NN training. The developed FE-NN model was evaluated by comparing the predicted parameters from the indentation responses of the target materials with those measured from tensile tests. These parameters were expressed as the yield locus and directional properties. The results demonstrated that the FE-NN modeling approach is robust and can accurately capture the anisotropic plastic flow from indentation responses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助青柚采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
想要一飞冲天的兔子完成签到,获得积分10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
1秒前
舒适桐关注了科研通微信公众号
1秒前
科目三应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
one_more_thing完成签到,获得积分20
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
隐形曼青应助yang采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
Jared应助HUIHUI采纳,获得10
2秒前
郑大大应助科研通管家采纳,获得10
2秒前
小禾发布了新的文献求助10
2秒前
2秒前
三岁应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
小二郎应助wxt采纳,获得10
2秒前
mimi完成签到 ,获得积分10
2秒前
1123048683wm完成签到,获得积分10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
三岁应助科研通管家采纳,获得10
3秒前
3秒前
不倦应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
xjf关注了科研通微信公众号
3秒前
张卓情完成签到,获得积分10
4秒前
4秒前
CipherSage应助彩色的大碗采纳,获得10
4秒前
CC发布了新的文献求助10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647752
求助须知:如何正确求助?哪些是违规求助? 4774203
关于积分的说明 15041173
捐赠科研通 4806669
什么是DOI,文献DOI怎么找? 2570374
邀请新用户注册赠送积分活动 1527179
关于科研通互助平台的介绍 1486224