Parameter determination of anisotropic yield function using neural network-based indentation plastometry

缩进 材料科学 人工神经网络 各向异性 结构工程 成形性 产量(工程) 硬化(计算) 拉伸试验 极限抗拉强度 有限元法 复合材料 计算机科学 工程类 人工智能 光学 物理 图层(电子)
作者
Kyeongjae Jeong,Kyungyul Lee,Dongil Kwon,Myoung‐Gyu Lee,Heung Nam Han
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:263: 108776-108776 被引量:4
标识
DOI:10.1016/j.ijmecsci.2023.108776
摘要

Understanding the impact of plastic anisotropy on the formability of sheet metals is crucial for their industrial application and high-precision forming simulation. Existing multiple uniaxial tensile tests for measuring the plastic flow of anisotropic materials, however, are costly, time-consuming, and destructive. Therefore, it is more efficient to focus on indentation plastometry, a simple, nondestructive test that can quickly extract tensile properties. The objective of this work is to directly derive the parameters of the advanced Poly6 yield criterion and hardening, which describes strong plastic anisotropy, using indentation plastometry basd on a neural network (NN) system. The identification process for these parameters through conventional tensile tests is inherently complex, thereby determining the parameters directly from indentation data presents an unprecedented challenge. We trained NNs using a database generated from verified finite element (FE) simulations of spherical indentations. To systematically iterate these FE simulations, we designed a strategy generating a set of input anisotropic parameters that ensure the convexity of the yield function. We considered the radial and vertical displacement fields around the indentation mark along with the load-depth curve as indentation responses. Through a comprehensive analysis of the correlation between displacement profiles, we have proposed an optimal feature extraction method for NN training. The developed FE-NN model was evaluated by comparing the predicted parameters from the indentation responses of the target materials with those measured from tensile tests. These parameters were expressed as the yield locus and directional properties. The results demonstrated that the FE-NN modeling approach is robust and can accurately capture the anisotropic plastic flow from indentation responses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助hjm采纳,获得10
2秒前
小迪迦奥特曼完成签到,获得积分10
2秒前
Zzz完成签到,获得积分10
3秒前
胖胖完成签到 ,获得积分0
5秒前
离研通完成签到,获得积分10
5秒前
夜倾心完成签到,获得积分10
5秒前
6秒前
生动的冥幽完成签到,获得积分10
6秒前
大豪完成签到,获得积分10
6秒前
无限的千凝完成签到 ,获得积分10
7秒前
舒适涵山完成签到,获得积分10
7秒前
H2O完成签到,获得积分10
9秒前
11秒前
莹0000完成签到,获得积分10
11秒前
潇洒天抒完成签到,获得积分10
13秒前
yar完成签到 ,获得积分10
13秒前
213驳回了李健应助
13秒前
姚序东完成签到,获得积分10
13秒前
T_MC郭完成签到,获得积分10
14秒前
ssk完成签到,获得积分10
14秒前
MUWENYING完成签到,获得积分10
16秒前
打打应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
yj发布了新的文献求助30
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
思源应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
17秒前
Stella应助科研通管家采纳,获得30
17秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
华青ww完成签到,获得积分10
18秒前
几许星河皓月完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600022
求助须知:如何正确求助?哪些是违规求助? 4685803
关于积分的说明 14839504
捐赠科研通 4674748
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505640
关于科研通互助平台的介绍 1471109