Digital Twin-Enabled Service Provisioning in Edge Computing via Continual Learning

计算机科学 分布式计算 同步(交流) 大数据 人工智能 多媒体 计算机网络 数据挖掘 频道(广播)
作者
Jing Li,Song Guo,Weifa Liang,Jianping Wang,Quan Chen,Yue Zeng,Baoliu Ye,Xiaohua Jia
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:7
标识
DOI:10.1109/tmc.2023.3332668
摘要

Propelled by recent advances in Mobile Edge Computing (MEC) and the Internet of Things (IoT), the digital twin technique has been envisioned as a de-facto driving force to bridge the virtual and physical worlds through creating digital portrayals of physical objects. In virtue of the flourishing of edge intelligence and abundant IoT data, data-driven modelling facilitates the implementation and maintenance of digital twins, where simulations of physical objects are usually performed based on Deep Neural Networks (DNNs). A significant advantage of adopting digital twins is to enable decisive prediction on the behaviours of objects in near future without waiting for that really happen. To provide accurate predictions, it is vital to keep each digital twin synchronized with its physical object in real-time. However, it is challenging to maintain the real-time synchronization between a digital twin and its physical object due to the dynamics of physical objects and sensing data drift over time, i.e., the live data from a physical object diverge from the model training data of its digital twin. To address this critical issue, continual learning is a promising solution to retrain models of digital twins incrementally. In this paper, we investigate digital twin synchronization issues via continual learning in an MEC environment, with the aim to maximize the total utility gain, i.e., the enhanced model accuracy. We study two novel optimization problems: the static digital twin synchronization problem per time slot and the dynamic digital twin synchronization problem for a finite time horizon. We first formulate an Integer Linear Program (ILP) solution for the static digital twin synchronization problem when the problem size is small; otherwise, we develop a randomized approximation algorithm at the expense of bounded resource violations for it. We also devise a deterministic approximation algorithm with guaranteed performance for a special case of the static digital twin synchronization problem. We thirdly consider the dynamic digital twin synchronization problem by proposing an efficient online algorithm for it. Finally, we evaluate the performance of the proposed algorithms for continuous digital twin synchronization through simulations. Simulation results show that the proposed algorithms are promising, outperforming counterpart benchmarks by no less than 13.2%, in terms of the total utility gain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜完成签到,获得积分10
刚刚
yjgao2022发布了新的文献求助30
1秒前
2秒前
yk发布了新的文献求助10
2秒前
蝈蝈完成签到,获得积分20
3秒前
zhj完成签到,获得积分10
5秒前
hhqalliswell发布了新的文献求助10
5秒前
科目三应助Strike采纳,获得10
6秒前
朱zhu发布了新的文献求助10
7秒前
hhxx完成签到,获得积分10
8秒前
8秒前
嘚嘚嘚发布了新的文献求助10
9秒前
Stove发布了新的文献求助10
9秒前
蝈蝈发布了新的文献求助10
10秒前
Ellen完成签到,获得积分10
10秒前
12秒前
WxChen发布了新的文献求助10
13秒前
yjgao2022完成签到,获得积分10
14秒前
14秒前
孙兆杰发布了新的文献求助10
15秒前
方又晴完成签到 ,获得积分10
15秒前
16秒前
xuhang发布了新的文献求助10
16秒前
天降紫微星完成签到,获得积分10
16秒前
17秒前
gaowei完成签到,获得积分10
18秒前
独特惋清发布了新的文献求助10
18秒前
尔尔完成签到,获得积分10
20秒前
阳光的伊发布了新的文献求助10
20秒前
苗条凡完成签到 ,获得积分10
21秒前
丁茸茸完成签到,获得积分10
22秒前
22秒前
pwj发布了新的文献求助10
23秒前
Xiangguang发布了新的文献求助10
24秒前
AAA完成签到,获得积分10
26秒前
七里香发布了新的文献求助10
28秒前
852应助独特惋清采纳,获得10
28秒前
28秒前
英姑应助abbsdan采纳,获得10
29秒前
酷波er应助孙兆杰采纳,获得10
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141417
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802814
捐赠科研通 2448645
什么是DOI,文献DOI怎么找? 1302695
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237