亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Digital Twin-Enabled Service Provisioning in Edge Computing via Continual Learning

计算机科学 分布式计算 同步(交流) 大数据 人工智能 多媒体 计算机网络 数据挖掘 频道(广播)
作者
Jing Li,Song Guo,Weifa Liang,Jianping Wang,Quan Chen,Yue Zeng,Baoliu Ye,Xiaohua Jia
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:: 1-16 被引量:7
标识
DOI:10.1109/tmc.2023.3332668
摘要

Propelled by recent advances in Mobile Edge Computing (MEC) and the Internet of Things (IoT), the digital twin technique has been envisioned as a de-facto driving force to bridge the virtual and physical worlds through creating digital portrayals of physical objects. In virtue of the flourishing of edge intelligence and abundant IoT data, data-driven modelling facilitates the implementation and maintenance of digital twins, where simulations of physical objects are usually performed based on Deep Neural Networks (DNNs). A significant advantage of adopting digital twins is to enable decisive prediction on the behaviours of objects in near future without waiting for that really happen. To provide accurate predictions, it is vital to keep each digital twin synchronized with its physical object in real-time. However, it is challenging to maintain the real-time synchronization between a digital twin and its physical object due to the dynamics of physical objects and sensing data drift over time, i.e., the live data from a physical object diverge from the model training data of its digital twin. To address this critical issue, continual learning is a promising solution to retrain models of digital twins incrementally. In this paper, we investigate digital twin synchronization issues via continual learning in an MEC environment, with the aim to maximize the total utility gain, i.e., the enhanced model accuracy. We study two novel optimization problems: the static digital twin synchronization problem per time slot and the dynamic digital twin synchronization problem for a finite time horizon. We first formulate an Integer Linear Program (ILP) solution for the static digital twin synchronization problem when the problem size is small; otherwise, we develop a randomized approximation algorithm at the expense of bounded resource violations for it. We also devise a deterministic approximation algorithm with guaranteed performance for a special case of the static digital twin synchronization problem. We thirdly consider the dynamic digital twin synchronization problem by proposing an efficient online algorithm for it. Finally, we evaluate the performance of the proposed algorithms for continuous digital twin synchronization through simulations. Simulation results show that the proposed algorithms are promising, outperforming counterpart benchmarks by no less than 13.2%, in terms of the total utility gain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
量子星尘发布了新的文献求助10
3秒前
14秒前
李爱国应助小张爱学习采纳,获得10
14秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
28秒前
28秒前
量子星尘发布了新的文献求助10
33秒前
Wei发布了新的文献求助10
34秒前
35秒前
43秒前
batter关注了科研通微信公众号
43秒前
量子星尘发布了新的文献求助10
48秒前
量子星尘发布了新的文献求助10
55秒前
58秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
batter发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
见识到了发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助150
2分钟前
Jasper应助zxw采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Wei发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
欣喜访旋发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660977
求助须知:如何正确求助?哪些是违规求助? 3222200
关于积分的说明 9743953
捐赠科研通 2931784
什么是DOI,文献DOI怎么找? 1605221
邀请新用户注册赠送积分活动 757760
科研通“疑难数据库(出版商)”最低求助积分说明 734503