亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a machine learning multiclass screening tool for periodontal health status based on non‐clinical parameters and salivary biomarkers

医学 牙周病 机器学习 牙科 计算机科学
作者
Ke Deng,Francesco Zonta,Huan Yang,George Pelekos,Maurizio S. Tonetti
出处
期刊:Journal of Clinical Periodontology [Wiley]
被引量:24
标识
DOI:10.1111/jcpe.13856
摘要

To develop a multiclass non-clinical screening tool for periodontal disease and assess its accuracy for differentiating periodontal health, gingivitis and different stages of periodontitis.A cross-sectional diagnostic study on a convenience sample of 408 consecutive subjects was conducted by applying three non-clinical index tests estimating different features of the periodontal health-disease spectrum: a self-administered questionnaire, an oral rinse activated matrix metalloproteinase-8 (aMMP-8) point-of-care test (POCT) and determination of gingival bleeding on brushing (GBoB). Full-mouth periodontal examination was the reference standard. The periodontal diagnosis was made on the basis of the 2017 classification of periodontal diseases and conditions. Logistic regression and random forest (RF) analyses were performed to predict various periodontal diagnoses, and the accuracy measures were assessed.Four-hundred and eight subjects were enrolled in this study, including those with periodontal health (16.2%), gingivitis (15.2%) and stage I (15.9%), stage II (15.9%), stage III (29.7%) and stage IV (7.1%) periodontitis. Nine predictors, namely 'gum disease' (Q1), 'a rating of gum/teeth health' (Q2), 'tooth cleaning' (Q3a), the symptom of 'loose teeth' (Q4), 'use of floss' (Q7), aMMP-8 POCT, self-reported GBoB, haemoglobin and age, resulted in high levels of accuracy in the RF classifier. High accuracy (area under the ROC curve > 0.94) was observed for the discrimination of three (health, gingivitis and periodontitis) and six classes (health, gingivitis, stages I, II, III and IV periodontitis). Confusion matrices showed that the misclassification of a periodontitis case as health or gingivitis was less than 1%-2%.Machine learning-based classifiers, such as RF analyses, are promising tools for multiclass assessment of periodontal health and disease in a non-clinical setting. Results need to be externally validated in appropriately sized independent samples (ClinicalTrials.gov NCT03928080).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼发布了新的文献求助10
2秒前
思源应助王化省采纳,获得10
3秒前
4秒前
5秒前
沉默白猫完成签到 ,获得积分10
6秒前
方梓言发布了新的文献求助10
6秒前
西门戆戆发布了新的文献求助10
10秒前
PJY发布了新的文献求助10
11秒前
寻道图强完成签到,获得积分0
13秒前
脑洞疼应助无奈的大门采纳,获得10
14秒前
科妍通AI2_1应助PJY采纳,获得10
16秒前
温婉的谷菱完成签到,获得积分10
19秒前
无私的奇异果完成签到 ,获得积分10
19秒前
Ya完成签到 ,获得积分10
22秒前
Okanryo完成签到,获得积分10
26秒前
29秒前
sun448526完成签到,获得积分10
30秒前
William_l_c完成签到,获得积分10
32秒前
十一完成签到,获得积分10
32秒前
33秒前
女士刘完成签到,获得积分10
33秒前
33秒前
和光同尘完成签到,获得积分10
34秒前
云峤发布了新的文献求助10
35秒前
方梓言完成签到 ,获得积分10
36秒前
西门戆戆完成签到,获得积分10
36秒前
fan发布了新的文献求助10
37秒前
Owen应助帅气绮露采纳,获得10
38秒前
猪猪侠发布了新的文献求助10
39秒前
沉默火完成签到,获得积分10
40秒前
45秒前
英姑应助科研通管家采纳,获得10
45秒前
科研通AI6应助科研通管家采纳,获得10
45秒前
Ava应助科研通管家采纳,获得10
45秒前
科研通AI6应助科研通管家采纳,获得10
45秒前
JamesPei应助科研通管家采纳,获得10
45秒前
科研通AI6应助科研通管家采纳,获得10
46秒前
46秒前
云峤完成签到 ,获得积分10
51秒前
坦率的面包完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779791
求助须知:如何正确求助?哪些是违规求助? 5649870
关于积分的说明 15452355
捐赠科研通 4910851
什么是DOI,文献DOI怎么找? 2642982
邀请新用户注册赠送积分活动 1590635
关于科研通互助平台的介绍 1545094