Development of a machine learning multiclass screening tool for periodontal health status based on non‐clinical parameters and salivary biomarkers

医学 牙周病 机器学习 牙科 计算机科学
作者
Ke Deng,Francesco Zonta,Huan Yang,George Pelekos,Maurizio S. Tonetti
出处
期刊:Journal of Clinical Periodontology [Wiley]
被引量:24
标识
DOI:10.1111/jcpe.13856
摘要

To develop a multiclass non-clinical screening tool for periodontal disease and assess its accuracy for differentiating periodontal health, gingivitis and different stages of periodontitis.A cross-sectional diagnostic study on a convenience sample of 408 consecutive subjects was conducted by applying three non-clinical index tests estimating different features of the periodontal health-disease spectrum: a self-administered questionnaire, an oral rinse activated matrix metalloproteinase-8 (aMMP-8) point-of-care test (POCT) and determination of gingival bleeding on brushing (GBoB). Full-mouth periodontal examination was the reference standard. The periodontal diagnosis was made on the basis of the 2017 classification of periodontal diseases and conditions. Logistic regression and random forest (RF) analyses were performed to predict various periodontal diagnoses, and the accuracy measures were assessed.Four-hundred and eight subjects were enrolled in this study, including those with periodontal health (16.2%), gingivitis (15.2%) and stage I (15.9%), stage II (15.9%), stage III (29.7%) and stage IV (7.1%) periodontitis. Nine predictors, namely 'gum disease' (Q1), 'a rating of gum/teeth health' (Q2), 'tooth cleaning' (Q3a), the symptom of 'loose teeth' (Q4), 'use of floss' (Q7), aMMP-8 POCT, self-reported GBoB, haemoglobin and age, resulted in high levels of accuracy in the RF classifier. High accuracy (area under the ROC curve > 0.94) was observed for the discrimination of three (health, gingivitis and periodontitis) and six classes (health, gingivitis, stages I, II, III and IV periodontitis). Confusion matrices showed that the misclassification of a periodontitis case as health or gingivitis was less than 1%-2%.Machine learning-based classifiers, such as RF analyses, are promising tools for multiclass assessment of periodontal health and disease in a non-clinical setting. Results need to be externally validated in appropriately sized independent samples (ClinicalTrials.gov NCT03928080).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rslysywd完成签到,获得积分10
刚刚
zwk发布了新的文献求助10
刚刚
ko_echo完成签到,获得积分10
2秒前
2秒前
加油nyd发布了新的文献求助10
3秒前
3秒前
小兵发布了新的文献求助10
3秒前
3秒前
chengxiping发布了新的文献求助10
4秒前
4秒前
yshog发布了新的文献求助10
4秒前
熊猫海完成签到,获得积分10
4秒前
5秒前
蓝莓完成签到,获得积分10
6秒前
徐安琪完成签到,获得积分10
6秒前
6秒前
Hilda007应助麻薯头头采纳,获得10
7秒前
科研通AI2S应助麻薯头头采纳,获得10
7秒前
7秒前
8秒前
zyun发布了新的文献求助30
8秒前
9秒前
飞翔的小鸟完成签到 ,获得积分10
9秒前
9秒前
笑看风云完成签到,获得积分10
10秒前
11秒前
error完成签到 ,获得积分10
12秒前
苏苏发布了新的文献求助10
12秒前
rose发布了新的文献求助30
12秒前
jou发布了新的文献求助10
12秒前
乐观小之应助夏傥采纳,获得10
14秒前
lzy完成签到,获得积分10
14秒前
14秒前
不倦应助超级无敌幸运星采纳,获得10
15秒前
故意不上钩的鱼应助小兵采纳,获得10
15秒前
小青椒应助Mesting采纳,获得30
15秒前
16秒前
16秒前
叮叮当当应助善良的发带采纳,获得20
16秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297298
求助须知:如何正确求助?哪些是违规求助? 4446207
关于积分的说明 13838799
捐赠科研通 4331371
什么是DOI,文献DOI怎么找? 2377578
邀请新用户注册赠送积分活动 1372834
关于科研通互助平台的介绍 1338403