Development of a machine learning multiclass screening tool for periodontal health status based on non‐clinical parameters and salivary biomarkers

医学 牙周病 机器学习 牙科 计算机科学
作者
Ke Deng,Francesco Zonta,Huan Yang,George Pelekos,Maurizio S. Tonetti
出处
期刊:Journal of Clinical Periodontology [Wiley]
被引量:9
标识
DOI:10.1111/jcpe.13856
摘要

To develop a multiclass non-clinical screening tool for periodontal disease and assess its accuracy for differentiating periodontal health, gingivitis and different stages of periodontitis.A cross-sectional diagnostic study on a convenience sample of 408 consecutive subjects was conducted by applying three non-clinical index tests estimating different features of the periodontal health-disease spectrum: a self-administered questionnaire, an oral rinse activated matrix metalloproteinase-8 (aMMP-8) point-of-care test (POCT) and determination of gingival bleeding on brushing (GBoB). Full-mouth periodontal examination was the reference standard. The periodontal diagnosis was made on the basis of the 2017 classification of periodontal diseases and conditions. Logistic regression and random forest (RF) analyses were performed to predict various periodontal diagnoses, and the accuracy measures were assessed.Four-hundred and eight subjects were enrolled in this study, including those with periodontal health (16.2%), gingivitis (15.2%) and stage I (15.9%), stage II (15.9%), stage III (29.7%) and stage IV (7.1%) periodontitis. Nine predictors, namely 'gum disease' (Q1), 'a rating of gum/teeth health' (Q2), 'tooth cleaning' (Q3a), the symptom of 'loose teeth' (Q4), 'use of floss' (Q7), aMMP-8 POCT, self-reported GBoB, haemoglobin and age, resulted in high levels of accuracy in the RF classifier. High accuracy (area under the ROC curve > 0.94) was observed for the discrimination of three (health, gingivitis and periodontitis) and six classes (health, gingivitis, stages I, II, III and IV periodontitis). Confusion matrices showed that the misclassification of a periodontitis case as health or gingivitis was less than 1%-2%.Machine learning-based classifiers, such as RF analyses, are promising tools for multiclass assessment of periodontal health and disease in a non-clinical setting. Results need to be externally validated in appropriately sized independent samples (ClinicalTrials.gov NCT03928080).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
bzdjsmw完成签到 ,获得积分10
1秒前
WebCasa应助旦皋采纳,获得10
1秒前
路易斯完成签到,获得积分10
2秒前
颜愫发布了新的文献求助10
2秒前
萌萌完成签到,获得积分10
3秒前
研友_X89o6n完成签到,获得积分10
5秒前
Ther发布了新的文献求助10
7秒前
哈哈哈完成签到,获得积分10
8秒前
10秒前
诚心的初露完成签到,获得积分10
10秒前
lyb完成签到 ,获得积分10
12秒前
风中方盒完成签到,获得积分20
12秒前
布丁圆团完成签到,获得积分10
13秒前
yikeshu完成签到,获得积分10
13秒前
Zoe完成签到 ,获得积分10
14秒前
16秒前
星辰大海应助do0采纳,获得10
17秒前
tt完成签到 ,获得积分10
18秒前
浅辰完成签到,获得积分10
19秒前
大气萤完成签到,获得积分20
20秒前
20秒前
我ppp完成签到 ,获得积分10
20秒前
21秒前
易燃物品完成签到,获得积分10
21秒前
Hello应助Ther采纳,获得10
23秒前
CherylZhao完成签到,获得积分10
24秒前
Galato发布了新的文献求助10
25秒前
颜愫完成签到,获得积分10
25秒前
安详向日葵完成签到 ,获得积分10
26秒前
拼搏的白云完成签到,获得积分10
26秒前
852应助hhh采纳,获得10
26秒前
李白白白完成签到,获得积分10
26秒前
王手完成签到,获得积分10
26秒前
27秒前
一人完成签到,获得积分10
28秒前
do0完成签到,获得积分10
29秒前
yar应助xlz110采纳,获得10
29秒前
NexusExplorer应助落寞凌波采纳,获得10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029