Development of a machine learning multiclass screening tool for periodontal health status based on non‐clinical parameters and salivary biomarkers

医学 牙周病 机器学习 牙科 计算机科学
作者
Ke Deng,Francesco Zonta,Huan Yang,George Pelekos,Maurizio S. Tonetti
出处
期刊:Journal of Clinical Periodontology [Wiley]
被引量:9
标识
DOI:10.1111/jcpe.13856
摘要

To develop a multiclass non-clinical screening tool for periodontal disease and assess its accuracy for differentiating periodontal health, gingivitis and different stages of periodontitis.A cross-sectional diagnostic study on a convenience sample of 408 consecutive subjects was conducted by applying three non-clinical index tests estimating different features of the periodontal health-disease spectrum: a self-administered questionnaire, an oral rinse activated matrix metalloproteinase-8 (aMMP-8) point-of-care test (POCT) and determination of gingival bleeding on brushing (GBoB). Full-mouth periodontal examination was the reference standard. The periodontal diagnosis was made on the basis of the 2017 classification of periodontal diseases and conditions. Logistic regression and random forest (RF) analyses were performed to predict various periodontal diagnoses, and the accuracy measures were assessed.Four-hundred and eight subjects were enrolled in this study, including those with periodontal health (16.2%), gingivitis (15.2%) and stage I (15.9%), stage II (15.9%), stage III (29.7%) and stage IV (7.1%) periodontitis. Nine predictors, namely 'gum disease' (Q1), 'a rating of gum/teeth health' (Q2), 'tooth cleaning' (Q3a), the symptom of 'loose teeth' (Q4), 'use of floss' (Q7), aMMP-8 POCT, self-reported GBoB, haemoglobin and age, resulted in high levels of accuracy in the RF classifier. High accuracy (area under the ROC curve > 0.94) was observed for the discrimination of three (health, gingivitis and periodontitis) and six classes (health, gingivitis, stages I, II, III and IV periodontitis). Confusion matrices showed that the misclassification of a periodontitis case as health or gingivitis was less than 1%-2%.Machine learning-based classifiers, such as RF analyses, are promising tools for multiclass assessment of periodontal health and disease in a non-clinical setting. Results need to be externally validated in appropriately sized independent samples (ClinicalTrials.gov NCT03928080).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顾矜应助研友_LwMooZ采纳,获得30
1秒前
苏卿应助Yeah采纳,获得10
1秒前
puzzle完成签到,获得积分10
2秒前
123发布了新的文献求助30
2秒前
星星又累完成签到,获得积分10
2秒前
深情安青应助Nina采纳,获得10
3秒前
酒酒发布了新的文献求助10
3秒前
hellobxx完成签到,获得积分10
3秒前
3秒前
浴火重生发布了新的文献求助10
5秒前
YiPeng发布了新的文献求助10
5秒前
大个应助加菲猫采纳,获得10
5秒前
wlc完成签到,获得积分10
7秒前
共享精神应助科研小白采纳,获得10
8秒前
爆米花应助clarall采纳,获得10
8秒前
罗静完成签到,获得积分10
8秒前
iNk应助张钰婷啦啦啦采纳,获得20
9秒前
林兰特完成签到,获得积分10
9秒前
9秒前
可爱的函函应助兮兮采纳,获得10
10秒前
10秒前
可爱的函函应助研友_ED5GK采纳,获得20
11秒前
12秒前
胖虎啊发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
小聂应助爱听歌灭绝采纳,获得10
13秒前
13秒前
共享精神应助挽歌采纳,获得10
14秒前
大气怜烟发布了新的文献求助10
14秒前
15秒前
于小鱼发布了新的文献求助10
15秒前
舒适圈发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
KEYANKEYAN发布了新的文献求助50
17秒前
Poik发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152731
求助须知:如何正确求助?哪些是违规求助? 2803968
关于积分的说明 7856424
捐赠科研通 2461663
什么是DOI,文献DOI怎么找? 1310474
科研通“疑难数据库(出版商)”最低求助积分说明 629233
版权声明 601782