亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nitrate prediction in groundwater of data scarce regions: The futuristic fresh-water management outlook

地下水 随机森林 环境科学 水文地质学 支持向量机 水质 人口 水文学(农业) 硝酸盐 克里金 水资源管理 机器学习 环境卫生 计算机科学 生态学 工程类 医学 生物 岩土工程
作者
Jürgen Mahlknecht,Juan Antonio Torres-Martínez,Manish Kumar,Abrahan Mora,Dugin Kaown,Frank J. Loge
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:905: 166863-166863 被引量:19
标识
DOI:10.1016/j.scitotenv.2023.166863
摘要

Nitrate contamination in groundwater poses a significant threat to water quality and public health, especially in regions with limited data availability. This study addresses this challenge by employing machine learning (ML) techniques to predict nitrate (NO3--N) concentrations in Mexico's groundwater. Four ML algorithms-Extreme Gradient Boosting (XGB), Boosted Regression Trees (BRT), Random Forest (RF), and Support Vector Machines (SVM)-were executed to model NO3--N concentrations across the country. Despite data limitations, the ML models achieved robust predictive performances. XGB and BRT algorithms demonstrated superior accuracy (0.80 and 0.78, respectively). Notably, this was achieved using ∼10 times less information than previous large-scale assessments. The novelty lies in the first-ever implementation of the 'Support Points-based Split Approach' during data pre-processing. The models considered initially 68 covariates and identified 13-19 significant predictors of NO3--N concentration spanning from climate, geomorphology, soil, hydrogeology, and human factors. Rainfall, elevation, and slope emerged as key predictors. A validation incorporated nationwide waste disposal sites, yielding an encouraging correlation. Spatial risk mapping unveiled significant pollution hotspots across Mexico. Regions with elevated NO3--N concentrations (>10 mg/L) were identified, particularly in the north-central and northeast parts of the country, associated with agricultural and industrial activities. Approximately 21 million people, accounting for 10 % of Mexico's population, are potentially exposed to elevated NO3--N levels in groundwater. Moreover, the NO3--N hotspots align with reported NO3--N health implications such as gastric and colorectal cancer. This study not only demonstrates the potential of ML in data-scarce regions but also offers actionable insights for policy and management strategies. Our research underscores the urgency of implementing sustainable agricultural practices and comprehensive domestic waste management measures to mitigate NO3--N contamination. Moreover, it advocates for the establishment of effective policies based on real-time monitoring and collaboration among stakeholders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流白完成签到 ,获得积分10
13秒前
47秒前
li发布了新的文献求助10
49秒前
blenx完成签到,获得积分10
59秒前
li关闭了li文献求助
1分钟前
2分钟前
隐形曼青应助Dr.向采纳,获得10
2分钟前
2分钟前
Dr.向发布了新的文献求助10
2分钟前
xixi完成签到 ,获得积分0
2分钟前
小白菜完成签到,获得积分10
2分钟前
qqq完成签到,获得积分10
3分钟前
李健应助是是是采纳,获得10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
Orange应助凶狠的秀发采纳,获得10
4分钟前
ring发布了新的文献求助10
4分钟前
4分钟前
4分钟前
ring完成签到,获得积分20
4分钟前
是是是发布了新的文献求助10
4分钟前
Lucas应助啊强采纳,获得10
5分钟前
5分钟前
33完成签到,获得积分0
5分钟前
5分钟前
啊强发布了新的文献求助10
5分钟前
sochiyuen完成签到,获得积分10
6分钟前
6分钟前
6分钟前
邱邵芸发布了新的文献求助10
6分钟前
6分钟前
英姑应助是是是采纳,获得10
6分钟前
7分钟前
上官若男应助凶狠的秀发采纳,获得10
7分钟前
7分钟前
爱读文献完成签到,获得积分10
7分钟前
爱读文献发布了新的文献求助10
7分钟前
NexusExplorer应助邱邵芸采纳,获得10
7分钟前
酷波er应助风来枫去采纳,获得10
7分钟前
邱邵芸完成签到,获得积分10
7分钟前
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566619
求助须知:如何正确求助?哪些是违规求助? 3139342
关于积分的说明 9431601
捐赠科研通 2840174
什么是DOI,文献DOI怎么找? 1560973
邀请新用户注册赠送积分活动 730121
科研通“疑难数据库(出版商)”最低求助积分说明 717843