已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recent advances in image dehazing: Formal analysis to automated approaches

计算机科学 水准点(测量) 人工智能 图像(数学) 领域(数学分析) 图像处理 过程(计算) 计算机视觉 机器学习 大地测量学 数学 操作系统 数学分析 地理
作者
Bhawna Goyal,Ayush Dogra,Dawa Chyophel Lepcha,Vishal Goyal,Ahmed Alkhayyat,Jasgurpreet Singh Chohan,Vinay Kukreja
出处
期刊:Information Fusion [Elsevier]
卷期号:104: 102151-102151 被引量:1
标识
DOI:10.1016/j.inffus.2023.102151
摘要

Images captured in hazy environments need to be processed to increase their contrast and colour integrity. Dehazing, sometimes referred to as haze removal is an important pre-processing step for image processing and computer vision applications. Numerous methods for dehazing images have been proposed in the literature. This study provides a complete evaluation of numerous image dehazing techniques and their notable standards. This study extracted and presented an important direction of the many algorithms to handle the challenges of dehazing such as model-based methods, transform domain methods, variational-based algorithms, learning-based algorithm and transformer-based algorithms. This study attempts to compile and evaluate the most important studies in the domain of image dehazing. A variety of factors have been considered necessary to provide a detailed information in this study. These factors include datasets that utilised in the literature, challenges faced by the prior researchers, motivations, and recommendations for reducing the drawbacks in the available literature. The systematic rules are utilized for searching all relevant papers on image dehazing using several keyword diversities along with a glance for assessment and the benchmark studies. Image dehazing, which generally eliminates undesirable pictographic effects is often considered as an image enhancement method. A completely automated process, a valid assessment strategy, and databases based on diverse settings are needed for it to operate under real-time applications. Many relevant studies are conducted in order to achieve these substantial goals. We examined numerous image dehazing methods and assessed the objectivity of the results. The results of our study precisely reflect numerous observations on image dehazing regions in contrast to other review articles. We believe that the findings of the study can be a helpful set of recommendations for professionals looking for a full understanding of image dehazing. In addition, we present a thorough examination of the methods used to evaluate image quality using the full-reference category and the no-reference category. Several standard evaluation metrics are utilised to compare the results of the well-known dehazing techniques. A list of standard haze image datasets is also included in this study so that different dehazing methods can be compared. In our opinion, the findings of this study could act as a valuable guide for experts in quest of a detailed understanding of image dehazing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助眯眯眼的裙子采纳,获得10
1秒前
小马甲应助做实验的蘑菇采纳,获得10
2秒前
yaooo发布了新的文献求助10
2秒前
Lan完成签到 ,获得积分10
3秒前
Faye完成签到,获得积分20
4秒前
壮观的谷冬完成签到 ,获得积分10
4秒前
搜集达人应助SI采纳,获得10
6秒前
Owen应助MAD666采纳,获得10
7秒前
搜集达人应助Faye采纳,获得10
8秒前
朱珠贝完成签到,获得积分10
9秒前
10秒前
10秒前
yaooo完成签到,获得积分20
10秒前
10秒前
zhul09完成签到,获得积分10
11秒前
13秒前
14秒前
叮咚发布了新的文献求助10
16秒前
IIIKERUI发布了新的文献求助30
16秒前
air完成签到,获得积分20
16秒前
SI发布了新的文献求助10
17秒前
H_不甜也是糖完成签到 ,获得积分10
18秒前
小笛子完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
贝妮戴塔完成签到 ,获得积分10
23秒前
追三完成签到 ,获得积分10
24秒前
孤鸿影98完成签到 ,获得积分0
24秒前
VPN不好用发布了新的文献求助10
25秒前
冷静的莞完成签到 ,获得积分10
25秒前
26秒前
112233445566发布了新的文献求助30
26秒前
27秒前
IIIKERUI完成签到,获得积分10
28秒前
28秒前
ko1完成签到 ,获得积分10
30秒前
科研通AI2S应助司空豁采纳,获得10
32秒前
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133831
求助须知:如何正确求助?哪些是违规求助? 2784777
关于积分的说明 7768448
捐赠科研通 2440089
什么是DOI,文献DOI怎么找? 1297185
科研通“疑难数据库(出版商)”最低求助积分说明 624901
版权声明 600791