A knowledge-guided pre-training framework for improving molecular representation learning

计算机科学 机器学习 人工智能 特征学习 药物发现 图形 生物信息学 理论计算机科学 生物
作者
Han Li,Ruotian Zhang,Yaosen Min,Dacheng Ma,Dan Zhao,Jianyang Zeng
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:14 (1) 被引量:25
标识
DOI:10.1038/s41467-023-43214-1
摘要

Abstract Learning effective molecular feature representation to facilitate molecular property prediction is of great significance for drug discovery. Recently, there has been a surge of interest in pre-training graph neural networks (GNNs) via self-supervised learning techniques to overcome the challenge of data scarcity in molecular property prediction. However, current self-supervised learning-based methods suffer from two main obstacles: the lack of a well-defined self-supervised learning strategy and the limited capacity of GNNs. Here, we propose Knowledge-guided Pre-training of Graph Transformer (KPGT), a self-supervised learning framework to alleviate the aforementioned issues and provide generalizable and robust molecular representations. The KPGT framework integrates a graph transformer specifically designed for molecular graphs and a knowledge-guided pre-training strategy, to fully capture both structural and semantic knowledge of molecules. Through extensive computational tests on 63 datasets, KPGT exhibits superior performance in predicting molecular properties across various domains. Moreover, the practical applicability of KPGT in drug discovery has been validated by identifying potential inhibitors of two antitumor targets: hematopoietic progenitor kinase 1 (HPK1) and fibroblast growth factor receptor 1 (FGFR1). Overall, KPGT can provide a powerful and useful tool for advancing the artificial intelligence (AI)-aided drug discovery process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
只要平凡发布了新的文献求助10
1秒前
隐形曼青应助jfaioe采纳,获得10
1秒前
2秒前
HZH发布了新的文献求助10
4秒前
4秒前
lante发布了新的文献求助10
4秒前
Mabel发布了新的文献求助10
5秒前
xfye发布了新的文献求助20
5秒前
6秒前
6秒前
6秒前
8秒前
麦克阿宇发布了新的文献求助10
8秒前
9秒前
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
ED应助科研通管家采纳,获得20
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
eric888应助科研通管家采纳,获得150
10秒前
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
佳佳应助科研通管家采纳,获得20
10秒前
10秒前
10秒前
10秒前
10秒前
王359发布了新的文献求助10
12秒前
风趣从露发布了新的文献求助10
14秒前
天边发布了新的文献求助10
14秒前
深情安青应助111采纳,获得10
15秒前
柏林寒冬应助赵乂采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993971
求助须知:如何正确求助?哪些是违规求助? 3534571
关于积分的说明 11265961
捐赠科研通 3274483
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883224
科研通“疑难数据库(出版商)”最低求助积分说明 809712