Hydro/solvothermally grown ZnS/MnO2-metal organic framework based hydrogel for all solid-state flexible supercapacitor

超级电容器 材料科学 双金属片 电解质 化学工程 金属有机骨架 电容 电化学 纳米技术 储能 电极 准固态 金属 冶金 色素敏化染料 化学 功率(物理) 物理 有机化学 物理化学 吸附 量子力学 工程类
作者
Om Priya Nanda,Pratiksha Singh,Yadagiri Naik Banothu,Rupesh Kumar,Sushmee Badhulika
出处
期刊:Journal of energy storage [Elsevier]
卷期号:75: 109729-109729 被引量:24
标识
DOI:10.1016/j.est.2023.109729
摘要

Flexible hydrogel-based supercapacitor (SC) has amassed significant attention because of its outstanding mechanical endurance, which allows it to maintain stable electrochemical performance even after numerous bending cycles. This feature demonstrates its enormous potential for seamless integration into bendable and wearable electronic devices while maintaining energy storage efficiency. Hence, we report hydro/solvothermally grown bimetallic ZnS/MnO2 Metal-organic Framework (MOF) based hydrogel fabricated via freeze drying method for an all solid-state based SC. The successful formation of cubic structured ZnS/MnO2-MOF is confirmed from X-ray diffraction analysis. A detailed morphological analysis of ZnS/MnO2-MOF based hydrogel reveals uniform dispersion of ZnS/MnO2-MOF in the hydrogel with a randomly oriented nanosheets like structure consisting of pores on the surface. The electrochemical measurements of ZnS/MnO2-MOF hydrogel based all-solid state symmetric SC with PVA-KOH electrolyte illustrates 112 F/g of specific capacitance at 1.5 A/g. Additionally, it also results in 30.3 Wh/kg of energy density with corresponding power density of 1050 W/kg. Furthermore, the device shows an exceptional stability, as indicated by its ability to retain 63 % of its capacitance over 20,000 cycles. This outstanding performance of the device is ascribed to the high conductivity of bimetallic MOF, PVA-KOH solid electrolyte. The electrodes presented here provides a promising alternative to traditional SCs performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Shan发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
充电宝应助zzzz采纳,获得10
4秒前
5秒前
bunny发布了新的文献求助10
5秒前
8秒前
9秒前
JunHan发布了新的文献求助10
9秒前
shlin完成签到,获得积分10
10秒前
10秒前
zz应助摸鱼大王采纳,获得10
11秒前
猪猪hero应助摸鱼大王采纳,获得10
11秒前
wanci应助hh采纳,获得10
11秒前
Owen应助周周采纳,获得10
12秒前
xy820完成签到,获得积分20
13秒前
Shan完成签到,获得积分10
14秒前
天天学习完成签到,获得积分10
15秒前
Zer完成签到,获得积分0
15秒前
15秒前
16秒前
zzzzzz完成签到,获得积分10
16秒前
xy820发布了新的文献求助10
16秒前
17秒前
科研通AI6.1应助深情素阴采纳,获得10
17秒前
18秒前
打打应助小怪兽不吃人采纳,获得10
18秒前
科研通AI6.1应助bunny采纳,获得10
19秒前
风吃掉月亮完成签到,获得积分10
20秒前
风趣绯完成签到,获得积分20
20秒前
十五完成签到,获得积分10
20秒前
20秒前
21秒前
YYDS666完成签到,获得积分10
21秒前
开朗的大叔完成签到,获得积分10
22秒前
22秒前
22秒前
甜美的千青完成签到 ,获得积分10
22秒前
23秒前
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742729
求助须知:如何正确求助?哪些是违规求助? 5409935
关于积分的说明 15345601
捐赠科研通 4883834
什么是DOI,文献DOI怎么找? 2625399
邀请新用户注册赠送积分活动 1574188
关于科研通互助平台的介绍 1531146