Predicting Visual Acuity Responses to Anti-VEGF Treatment in the Comparison of Age-related Macular Degeneration Treatments Trials Using Machine Learning

医学 视力 黄斑变性 眼科 血管内皮生长因子受体 临床试验 验光服务 内科学
作者
Rajat S. Chandra,Gui‐Shuang Ying
出处
期刊:Ophthalmology Retina [Elsevier]
卷期号:8 (5): 419-430 被引量:2
标识
DOI:10.1016/j.oret.2023.11.010
摘要

To evaluate multiple machine learning (ML) models for predicting 2-year visual acuity (VA) responses to anti-vascular endothelial growth factor (anti-VEGF) treatment in the Comparison of Age-related Macular Degeneration (AMD) Treatment Trials (CATT) for neovascular AMD (nAMD) patients. Secondary analysis of public data from a randomized clinical trial 1029 CATT participants who completed 2 years follow-up with untreated active nAMD and baseline VA between 20/25 and 20/320 in the study eye. Five ML models [support-vector machine (SVM), random forest, extreme gradient boosting (XGBoost), multi-layer perceptron (MLP) neural network, and lasso] were applied to clinical and image data from baseline, weeks 4, 8, and 12 for predicting 4 VA outcomes (≥15-letter VA gain, ≥15-letter VA loss, VA change from baseline, actual VA) at 2 years. The CATT data from 1029 participants were randomly split for training (n=717), from which the models were trained using 10-fold cross-validation, and for final validation on a test dataset (n=312). Main Outcome Measures: Performances of ML models were assessed by R2 and mean absolute error (MAE) for predicting VA change from baseline and actual VA at 2 years, by the area under the receiver operating characteristic (ROC) curve (AUC) for predicting ≥15-letter VA gain and loss from baseline. Using training data up to week 12, the ML models from cross-validation achieved mean R2 of 0.24-0.29 (MAE=9.1-9.8 letters) for predicting VA change and 0.37-0.41 (MAE=9.3-10.2 letters) for predicting actual VA at 2 years. The mean AUCs for predicting ≥15-letter VA gain and loss at 2 years was 0.84-0.85 and 0.58-0.73, respectively. In final validation on the test dataset up to week 12, the models had an R2 of 0.33-0.38 (MAE=8.9-9.9 letters) for predicting VA change, an R2 of 0.37-0.45 (MAE=8.8-10.2 letters) for predicting actual VA at 2 years, and AUCs of 0.85-0.87 and 0.67-0.79 for predicting ≥15-letter VA gain and loss, respectively. ML models have the potential to predict 2-year VA response to anti-VEGF treatment using clinical and imaging features from the loading dose phase, which can aid in decision-making around treatment protocols for nAMD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静硬币发布了新的文献求助10
刚刚
周圈圈完成签到,获得积分10
1秒前
wenjs发布了新的文献求助20
1秒前
张宝完成签到,获得积分10
3秒前
Fiona03完成签到 ,获得积分10
4秒前
陈大海完成签到,获得积分10
6秒前
大方易梦完成签到 ,获得积分10
8秒前
Orange应助冷静硬币采纳,获得10
8秒前
科研通AI2S应助可爱天川采纳,获得10
9秒前
shixi完成签到,获得积分10
9秒前
10秒前
12秒前
12秒前
14秒前
zzz应助Jade采纳,获得10
15秒前
为为子完成签到 ,获得积分10
16秒前
woyufengtian完成签到,获得积分10
17秒前
乐天发布了新的文献求助10
17秒前
shixi发布了新的文献求助10
18秒前
Bolaka发布了新的文献求助30
18秒前
所所应助ClarkClarkson采纳,获得10
21秒前
22秒前
研友_VZG7GZ应助乐天采纳,获得10
22秒前
李木子完成签到,获得积分10
24秒前
26秒前
纯真雁菱完成签到,获得积分10
27秒前
27秒前
天天快乐应助科研通管家采纳,获得30
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
李健应助科研通管家采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得10
28秒前
马大翔应助科研通管家采纳,获得20
28秒前
思源应助科研通管家采纳,获得10
28秒前
Hello应助科研通管家采纳,获得10
28秒前
28秒前
调研昵称发布了新的文献求助30
29秒前
木子完成签到,获得积分10
29秒前
天天快乐应助林薯条采纳,获得10
30秒前
30秒前
星星点灯发布了新的文献求助20
31秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170213
求助须知:如何正确求助?哪些是违规求助? 2821426
关于积分的说明 7934126
捐赠科研通 2481670
什么是DOI,文献DOI怎么找? 1322010
科研通“疑难数据库(出版商)”最低求助积分说明 633451
版权声明 602595