甲苯
大气温度范围
掺杂剂
航程(航空)
化学
兴奋剂
化学工程
材料科学
有机化学
热力学
复合材料
光电子学
物理
工程类
作者
Rong Li,Yu Huang,Xianjin Shi,Liqin Wang,Zhiyu Li,Dandan Zhu,Xiaoliang Liang,Junji Cao,Yujie Xiong
标识
DOI:10.1021/acs.est.3c03617
摘要
Development of cost-effective oxide catalysts holds the key to the removal of toluene, one of the most important volatile organic compounds. However, the catalysts follow varied working mechanisms at different reaction temperatures, posing a challenge to achieving efficient toluene removal over a wide temperature range. Here we report an agitation-assisted molten salt method, which achieves the rational doping on a two-dimensional Co3O4 catalyst and forms two different structures of active sites to enhance catalytic oxidation of toluene in specific temperature intervals, enabling a facile tandem design for working in a wide temperature range. Specifically, Co3O4 is doped with Cu at the octahedral site (Cu–Co3O4) and Zn at the tetrahedral site (Zn–Co3O4) to form CuOh–O–CoTe and ZnTe–O–CoOh structures on the surface, respectively. Mechanistic studies reveal the different working mechanisms of these two active sites toward remarkable performance enhancement at specific temperature intervals, and the improved performance derived from accelerated consumption of intermediates adsorbed on the catalyst surface. Taken together, Cu–Co3O4 and Zn–Co3O4 achieve excellent toluene purification performance over a wide temperature range. This work provides insights into the mechanism-oriented design of active sites at the atomic level.
科研通智能强力驱动
Strongly Powered by AbleSci AI