Local Self-attention-based Hybrid Multiple Instance Learning for Partial Spoof Speech Detection

欺骗攻击 计算机科学 联营 话语 语音识别 人工智能 模式识别(心理学) 计算机安全
作者
Yupeng Zhu,Yanxiang Chen,Zuxing Zhao,Xueliang Liu,Jinlin Guo
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:14 (5): 1-18 被引量:3
标识
DOI:10.1145/3616540
摘要

The development of speech synthesis technology has increased the attention toward the threat of spoofed speech. Although various high-performance spoofing countermeasures have been proposed in recent years, a particular scenario is overlooked: partially spoofed audio, where spoofed utterances may contain both spoofed and bona fide segments. Currently, the research on partially spoofed speech detection is lacking. The existing methods either train with partially spoofed speech at utterance level, resulting in gradient conflicting at the segment level, or directly train with segment level data, which requires segment labels that are difficult to obtain in practice. In this study, to better detect partially spoofed speech when only utterance labels are available, we formulate partially spoofed speech detection into a multiple instance learning (MIL) problem. The typical MIL uses a pooling layer to fuse patch scores as a whole, and we propose a hybrid MIL (H-MIL) framework based on max and log-sum-exp pooling methods, which can learn better segment representations to improve partially spoofed speech detection performance. Theoretical and experimental verification shows that H-MIL can effectively relieve the gradient conflicting and gradient vanishing problems. In addition, we analyze the local correlations between segments and introduce a local self-attention mechanism to enhance segment features, which further promotes the detection performance. In our experiments, we provide not only detection results at the segment and utterance levels but also some detailed visualization analysis, including the effect of spoof ratio and cross-dataset detection. The experimental results demonstrate the effective detection performance of our method at both the utterance and segment levels, especially when dealing with low spoof ratio attacks. The results confirm that our approach can better deal with partially spoofed speech detection than previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GJL完成签到,获得积分10
1秒前
zhang狗子完成签到,获得积分10
1秒前
2秒前
小马甲应助PSC采纳,获得10
2秒前
会飞的猪完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
小灰灰完成签到,获得积分0
4秒前
久久完成签到,获得积分10
4秒前
冬月完成签到,获得积分10
4秒前
zhang狗子发布了新的文献求助10
4秒前
月月完成签到,获得积分10
5秒前
鲜艳的棒棒糖完成签到,获得积分10
5秒前
cmc完成签到,获得积分10
5秒前
文静的凡儿完成签到,获得积分10
7秒前
淡淡从阳完成签到,获得积分10
7秒前
靓丽衫完成签到 ,获得积分10
7秒前
顺心的惜海关注了科研通微信公众号
8秒前
libiqing77完成签到,获得积分10
8秒前
躞蹀完成签到,获得积分10
9秒前
生动沅完成签到,获得积分10
9秒前
xiaohua完成签到,获得积分10
9秒前
Orange应助小美美采纳,获得10
9秒前
不想上班了完成签到,获得积分10
10秒前
尹晓敏完成签到,获得积分20
10秒前
jiu完成签到,获得积分10
10秒前
11秒前
11秒前
qiqi完成签到,获得积分10
12秒前
ding应助科研通管家采纳,获得10
12秒前
祖乐松完成签到,获得积分10
12秒前
12秒前
12秒前
Robertchen完成签到,获得积分0
13秒前
无花果应助zhang狗子采纳,获得10
13秒前
鲤鱼完成签到 ,获得积分10
13秒前
14秒前
14秒前
哈哈大王发布了新的文献求助10
15秒前
小圈圈梦魇完成签到,获得积分10
15秒前
zhh233完成签到,获得积分20
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957219
求助须知:如何正确求助?哪些是违规求助? 3503261
关于积分的说明 11112080
捐赠科研通 3234372
什么是DOI,文献DOI怎么找? 1787895
邀请新用户注册赠送积分活动 870817
科研通“疑难数据库(出版商)”最低求助积分说明 802330