Local Self-attention-based Hybrid Multiple Instance Learning for Partial Spoof Speech Detection

欺骗攻击 计算机科学 联营 话语 语音识别 人工智能 模式识别(心理学) 计算机安全
作者
Yupeng Zhu,Yanxiang Chen,Zuxing Zhao,Xueliang Liu,Jinlin Guo
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:14 (5): 1-18 被引量:3
标识
DOI:10.1145/3616540
摘要

The development of speech synthesis technology has increased the attention toward the threat of spoofed speech. Although various high-performance spoofing countermeasures have been proposed in recent years, a particular scenario is overlooked: partially spoofed audio, where spoofed utterances may contain both spoofed and bona fide segments. Currently, the research on partially spoofed speech detection is lacking. The existing methods either train with partially spoofed speech at utterance level, resulting in gradient conflicting at the segment level, or directly train with segment level data, which requires segment labels that are difficult to obtain in practice. In this study, to better detect partially spoofed speech when only utterance labels are available, we formulate partially spoofed speech detection into a multiple instance learning (MIL) problem. The typical MIL uses a pooling layer to fuse patch scores as a whole, and we propose a hybrid MIL (H-MIL) framework based on max and log-sum-exp pooling methods, which can learn better segment representations to improve partially spoofed speech detection performance. Theoretical and experimental verification shows that H-MIL can effectively relieve the gradient conflicting and gradient vanishing problems. In addition, we analyze the local correlations between segments and introduce a local self-attention mechanism to enhance segment features, which further promotes the detection performance. In our experiments, we provide not only detection results at the segment and utterance levels but also some detailed visualization analysis, including the effect of spoof ratio and cross-dataset detection. The experimental results demonstrate the effective detection performance of our method at both the utterance and segment levels, especially when dealing with low spoof ratio attacks. The results confirm that our approach can better deal with partially spoofed speech detection than previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZSQ完成签到,获得积分10
刚刚
Komorebi发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
杨欢完成签到,获得积分20
3秒前
gds2021完成签到,获得积分10
3秒前
Yvonne完成签到,获得积分10
3秒前
仇道罡发布了新的文献求助10
4秒前
堪萧发布了新的文献求助10
4秒前
moonlight发布了新的文献求助10
5秒前
5秒前
lisn发布了新的文献求助10
6秒前
顾矜应助xumengyu采纳,获得10
6秒前
CN柏原崇完成签到,获得积分10
6秒前
Yvonne发布了新的文献求助10
6秒前
酷波er应助林登万采纳,获得10
6秒前
FashionBoy应助林登万采纳,获得10
6秒前
科研小白应助林登万采纳,获得10
6秒前
科研小白应助林登万采纳,获得10
6秒前
英姑应助林登万采纳,获得10
6秒前
ddd发布了新的文献求助10
7秒前
7秒前
pluto应助hotzera采纳,获得10
7秒前
北斗星的爱完成签到,获得积分10
7秒前
爱吃泡芙发布了新的文献求助10
8秒前
8秒前
9秒前
天之道完成签到,获得积分20
9秒前
安白枫完成签到,获得积分10
10秒前
bluekids发布了新的文献求助50
10秒前
跳跃的邪欢完成签到,获得积分10
11秒前
11秒前
呼哧呼哧大佬完成签到,获得积分10
11秒前
Ava应助zzk采纳,获得10
11秒前
高大一一完成签到,获得积分10
12秒前
嘉心糖应助刻苦的安白采纳,获得20
13秒前
研友_LOK59L发布了新的文献求助10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916