重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Local Self-attention-based Hybrid Multiple Instance Learning for Partial Spoof Speech Detection

欺骗攻击 计算机科学 联营 话语 语音识别 人工智能 模式识别(心理学) 计算机安全
作者
Yupeng Zhu,Yanxiang Chen,Zuxing Zhao,Xueliang Liu,Jinlin Guo
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:14 (5): 1-18 被引量:3
标识
DOI:10.1145/3616540
摘要

The development of speech synthesis technology has increased the attention toward the threat of spoofed speech. Although various high-performance spoofing countermeasures have been proposed in recent years, a particular scenario is overlooked: partially spoofed audio, where spoofed utterances may contain both spoofed and bona fide segments. Currently, the research on partially spoofed speech detection is lacking. The existing methods either train with partially spoofed speech at utterance level, resulting in gradient conflicting at the segment level, or directly train with segment level data, which requires segment labels that are difficult to obtain in practice. In this study, to better detect partially spoofed speech when only utterance labels are available, we formulate partially spoofed speech detection into a multiple instance learning (MIL) problem. The typical MIL uses a pooling layer to fuse patch scores as a whole, and we propose a hybrid MIL (H-MIL) framework based on max and log-sum-exp pooling methods, which can learn better segment representations to improve partially spoofed speech detection performance. Theoretical and experimental verification shows that H-MIL can effectively relieve the gradient conflicting and gradient vanishing problems. In addition, we analyze the local correlations between segments and introduce a local self-attention mechanism to enhance segment features, which further promotes the detection performance. In our experiments, we provide not only detection results at the segment and utterance levels but also some detailed visualization analysis, including the effect of spoof ratio and cross-dataset detection. The experimental results demonstrate the effective detection performance of our method at both the utterance and segment levels, especially when dealing with low spoof ratio attacks. The results confirm that our approach can better deal with partially spoofed speech detection than previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真以寒发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
朱马大发布了新的文献求助10
1秒前
Stefani发布了新的文献求助10
1秒前
wy.he应助爱上下雨天采纳,获得10
2秒前
刘馨泽完成签到 ,获得积分20
2秒前
3秒前
无心的怜南完成签到,获得积分10
3秒前
xueshu666发布了新的文献求助10
3秒前
威武爆米花完成签到,获得积分10
4秒前
狐狸完成签到,获得积分20
4秒前
4秒前
jouholly发布了新的文献求助30
4秒前
风轩轩发布了新的文献求助10
5秒前
cm完成签到,获得积分10
5秒前
asder发布了新的文献求助10
5秒前
5秒前
王娟完成签到 ,获得积分10
6秒前
然而。发布了新的文献求助10
6秒前
6秒前
爱笑的桔子完成签到 ,获得积分10
6秒前
知天易易天难完成签到 ,获得积分10
7秒前
7秒前
认真以寒完成签到,获得积分20
7秒前
李兴起发布了新的文献求助10
7秒前
安静的赛君完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
高兴的羊完成签到,获得积分10
10秒前
AAA发布了新的文献求助20
10秒前
简默完成签到,获得积分10
10秒前
WendyWen发布了新的文献求助100
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
pancake发布了新的文献求助30
11秒前
11秒前
jackie给jackie的求助进行了留言
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516