Quantitative Analysis and Prediction of Academic Performance of Students Using Machine Learning

机器学习 计算机科学 人工智能 一般化 教育数据挖掘 性能预测 过程(计算) 质量(理念) 学业成绩 数学教育 心理学 模拟 数学 数学分析 哲学 认识论 操作系统
作者
Lihong Zhao,Jiaolong Ren,Zhang Li,Zhao Hong
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (16): 12531-12531 被引量:3
标识
DOI:10.3390/su151612531
摘要

Academic performance evaluation is essential to enhance educational affection and improve educational quality and level. However, evaluating academic performance is difficult due to the complexity and nonlinear education process and learning behavior. Recently, machine learning technology has been adopted in Educational Data Mining (EDM) to predict and evaluate students’ academic performance. This study developed a quantitative prediction model of academic performance and investigated the performance of various machine learning algorithms and the influencing factors based on the collected educational data. The results conclude that machine learning provided an excellent tool to characterize educational behavior and represent the nonlinear relationship between academic performance and its influencing factors. Although the performance of various methods has some differences, all could be used to capture the complex and implicit educational law and behavior. Furthermore, machine learning methods that fully consider various factors have better prediction and generalization performance. In order to characterize the educational law well and evaluate accurately the academic performance, it is necessary to consider as many influencing factors as possible in the machine learning model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈哈哈哈哈哈完成签到 ,获得积分10
刚刚
王楠楠完成签到 ,获得积分10
1秒前
1秒前
2秒前
3秒前
3秒前
3秒前
酷酷三问发布了新的文献求助10
3秒前
4秒前
4秒前
落后的老太完成签到,获得积分10
4秒前
chen发布了新的文献求助10
4秒前
张欣宇发布了新的文献求助10
5秒前
Abdurrahman完成签到,获得积分10
5秒前
蓝天发布了新的文献求助10
5秒前
硬币完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
科研求求你嘛完成签到,获得积分10
6秒前
愉快的苑博完成签到,获得积分10
7秒前
次一口多多完成签到,获得积分10
7秒前
7秒前
xx发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
liu发布了新的文献求助10
8秒前
yordeabese完成签到,获得积分10
8秒前
Ava应助轩辕雨文采纳,获得20
8秒前
8秒前
8秒前
Shalala完成签到,获得积分10
9秒前
9秒前
Sunyidan完成签到,获得积分10
9秒前
zhangyue7777完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
cc完成签到 ,获得积分10
11秒前
安_完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836