亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantitative Analysis and Prediction of Academic Performance of Students Using Machine Learning

机器学习 计算机科学 人工智能 一般化 教育数据挖掘 性能预测 过程(计算) 质量(理念) 学业成绩 数学教育 心理学 模拟 数学 数学分析 哲学 认识论 操作系统
作者
Lihong Zhao,Jiaolong Ren,Zhang Li,Zhao Hong
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:15 (16): 12531-12531 被引量:3
标识
DOI:10.3390/su151612531
摘要

Academic performance evaluation is essential to enhance educational affection and improve educational quality and level. However, evaluating academic performance is difficult due to the complexity and nonlinear education process and learning behavior. Recently, machine learning technology has been adopted in Educational Data Mining (EDM) to predict and evaluate students’ academic performance. This study developed a quantitative prediction model of academic performance and investigated the performance of various machine learning algorithms and the influencing factors based on the collected educational data. The results conclude that machine learning provided an excellent tool to characterize educational behavior and represent the nonlinear relationship between academic performance and its influencing factors. Although the performance of various methods has some differences, all could be used to capture the complex and implicit educational law and behavior. Furthermore, machine learning methods that fully consider various factors have better prediction and generalization performance. In order to characterize the educational law well and evaluate accurately the academic performance, it is necessary to consider as many influencing factors as possible in the machine learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助果果采纳,获得10
1秒前
浮游应助啵啵采纳,获得10
11秒前
12秒前
13秒前
万能图书馆应助Claudia采纳,获得30
15秒前
18秒前
19秒前
果果发布了新的文献求助10
23秒前
Hello应助yllcjl采纳,获得10
28秒前
斯文败类应助三哥采纳,获得30
36秒前
果果完成签到 ,获得积分10
40秒前
48秒前
徐矜发布了新的文献求助10
51秒前
科研通AI6应助科研通管家采纳,获得10
55秒前
唐泽雪穗应助科研通管家采纳,获得10
55秒前
唐泽雪穗应助科研通管家采纳,获得10
55秒前
56秒前
徐矜完成签到,获得积分10
1分钟前
和谐的亦丝完成签到,获得积分10
1分钟前
黑大侠完成签到 ,获得积分0
1分钟前
1分钟前
三哥发布了新的文献求助30
1分钟前
思源应助AAA1798采纳,获得10
1分钟前
传奇3应助感性的靖仇采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
AAA1798发布了新的文献求助10
1分钟前
南江悍匪发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
南江悍匪完成签到,获得积分10
1分钟前
1分钟前
852应助南江悍匪采纳,获得10
1分钟前
1分钟前
qyp完成签到,获得积分10
1分钟前
Jasper应助ST采纳,获得10
1分钟前
bkagyin应助尊敬的芷卉采纳,获得10
1分钟前
1分钟前
1分钟前
朴素绿蝶发布了新的文献求助10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5148041
求助须知:如何正确求助?哪些是违规求助? 4344432
关于积分的说明 13529488
捐赠科研通 4186403
什么是DOI,文献DOI怎么找? 2295619
邀请新用户注册赠送积分活动 1295999
关于科研通互助平台的介绍 1239684