Quantitative Analysis and Prediction of Academic Performance of Students Using Machine Learning

机器学习 计算机科学 人工智能 一般化 教育数据挖掘 性能预测 过程(计算) 质量(理念) 学业成绩 数学教育 心理学 模拟 数学 数学分析 哲学 认识论 操作系统
作者
Lihong Zhao,Jiaolong Ren,Zhang Li,Zhao Hong
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (16): 12531-12531 被引量:3
标识
DOI:10.3390/su151612531
摘要

Academic performance evaluation is essential to enhance educational affection and improve educational quality and level. However, evaluating academic performance is difficult due to the complexity and nonlinear education process and learning behavior. Recently, machine learning technology has been adopted in Educational Data Mining (EDM) to predict and evaluate students’ academic performance. This study developed a quantitative prediction model of academic performance and investigated the performance of various machine learning algorithms and the influencing factors based on the collected educational data. The results conclude that machine learning provided an excellent tool to characterize educational behavior and represent the nonlinear relationship between academic performance and its influencing factors. Although the performance of various methods has some differences, all could be used to capture the complex and implicit educational law and behavior. Furthermore, machine learning methods that fully consider various factors have better prediction and generalization performance. In order to characterize the educational law well and evaluate accurately the academic performance, it is necessary to consider as many influencing factors as possible in the machine learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左左蕊完成签到,获得积分10
刚刚
薛定谔的猫爱摸鱼完成签到,获得积分10
刚刚
千山完成签到,获得积分10
刚刚
故意的小熊猫完成签到,获得积分10
刚刚
Sylvia发布了新的文献求助10
刚刚
Merci完成签到,获得积分10
2秒前
qi完成签到,获得积分10
2秒前
chilin完成签到,获得积分10
2秒前
慕容绝义完成签到,获得积分10
2秒前
2秒前
wannna完成签到,获得积分10
3秒前
yl发布了新的文献求助10
4秒前
小马甲应助傻傻的磬采纳,获得10
4秒前
5秒前
宣宣完成签到 ,获得积分10
5秒前
Leo完成签到,获得积分0
5秒前
李劲亭完成签到,获得积分10
6秒前
韶绍完成签到 ,获得积分10
6秒前
再沉默完成签到,获得积分10
7秒前
无辜的银耳汤完成签到,获得积分10
7秒前
赵亚南完成签到,获得积分10
7秒前
过于喧嚣的孤独完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
9182完成签到,获得积分10
7秒前
豆子完成签到 ,获得积分10
7秒前
杨贵群完成签到,获得积分10
7秒前
安赛虫完成签到,获得积分10
8秒前
白夜完成签到 ,获得积分10
8秒前
无医完成签到,获得积分10
9秒前
llee2005完成签到,获得积分10
10秒前
筱星完成签到,获得积分10
10秒前
zxzb完成签到,获得积分10
10秒前
BenLuo完成签到,获得积分10
11秒前
11秒前
thinking完成签到,获得积分10
11秒前
共享精神应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
zlzhang应助科研通管家采纳,获得10
12秒前
正己化人应助科研通管家采纳,获得10
12秒前
李佳慧完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482740
求助须知:如何正确求助?哪些是违规求助? 4583466
关于积分的说明 14389895
捐赠科研通 4512796
什么是DOI,文献DOI怎么找? 2473214
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861