已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantitative Analysis and Prediction of Academic Performance of Students Using Machine Learning

机器学习 计算机科学 人工智能 一般化 教育数据挖掘 性能预测 过程(计算) 质量(理念) 学业成绩 数学教育 心理学 模拟 数学 数学分析 哲学 认识论 操作系统
作者
Lihong Zhao,Jiaolong Ren,Zhang Li,Zhao Hong
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (16): 12531-12531 被引量:3
标识
DOI:10.3390/su151612531
摘要

Academic performance evaluation is essential to enhance educational affection and improve educational quality and level. However, evaluating academic performance is difficult due to the complexity and nonlinear education process and learning behavior. Recently, machine learning technology has been adopted in Educational Data Mining (EDM) to predict and evaluate students’ academic performance. This study developed a quantitative prediction model of academic performance and investigated the performance of various machine learning algorithms and the influencing factors based on the collected educational data. The results conclude that machine learning provided an excellent tool to characterize educational behavior and represent the nonlinear relationship between academic performance and its influencing factors. Although the performance of various methods has some differences, all could be used to capture the complex and implicit educational law and behavior. Furthermore, machine learning methods that fully consider various factors have better prediction and generalization performance. In order to characterize the educational law well and evaluate accurately the academic performance, it is necessary to consider as many influencing factors as possible in the machine learning model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
崔灿发布了新的文献求助10
刚刚
彼方250521完成签到,获得积分10
1秒前
66289完成签到 ,获得积分10
2秒前
钟琪发布了新的文献求助10
3秒前
Fjj完成签到,获得积分10
3秒前
hhh完成签到 ,获得积分10
4秒前
小吴要努力科研完成签到 ,获得积分10
4秒前
ceeray23发布了新的文献求助20
7秒前
7秒前
w野发布了新的文献求助200
8秒前
Cheng应助tianhualefei采纳,获得10
9秒前
9秒前
10秒前
11秒前
WWW完成签到 ,获得积分10
12秒前
12秒前
15秒前
yin景景发布了新的文献求助10
15秒前
无花果应助钟琪采纳,获得10
15秒前
Visitor_001发布了新的文献求助10
16秒前
18秒前
19秒前
天真乌冬面完成签到 ,获得积分10
22秒前
22秒前
LH发布了新的文献求助10
23秒前
王兴博完成签到,获得积分10
23秒前
bkagyin应助烊驼采纳,获得10
24秒前
29秒前
yue完成签到 ,获得积分10
30秒前
肖敏发布了新的文献求助10
30秒前
31秒前
冰棒比冰冰完成签到 ,获得积分10
31秒前
隐形曼青应助科研通管家采纳,获得10
33秒前
ceeray23发布了新的文献求助20
33秒前
香蕉觅云应助科研通管家采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
赘婿应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
JamesPei应助科研通管家采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538224
求助须知:如何正确求助?哪些是违规求助? 4625430
关于积分的说明 14595889
捐赠科研通 4565994
什么是DOI,文献DOI怎么找? 2502869
邀请新用户注册赠送积分活动 1481206
关于科研通互助平台的介绍 1452435