3D Breast Cancer Segmentation in DCE‐MRI Using Deep Learning With Weak Annotation

基本事实 分割 人工智能 深度学习 计算机科学 注释 最小边界框 相关系数 乳腺癌 磁共振成像 相关性 人口 Sørensen–骰子系数 模式识别(心理学) 图像分割 机器学习 医学 数学 癌症 放射科 图像(数学) 几何学 内科学 环境卫生
作者
Ga Eun Park,Sung Hun Kim,Yoonho Nam,Junghwa Kang,Minjeong Park,Bong Joo Kang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (6): 2252-2262 被引量:11
标识
DOI:10.1002/jmri.28960
摘要

Background Deep learning models require large‐scale training to perform confidently, but obtaining annotated datasets in medical imaging is challenging. Weak annotation has emerged as a way to save time and effort. Purpose To develop a deep learning model for 3D breast cancer segmentation in dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) using weak annotation with reliable performance. Study Type Retrospective. Population Seven hundred and thirty‐six women with breast cancer from a single institution, divided into the development ( N = 544) and test dataset ( N = 192). Field Strength/Sequence 3.0‐T, 3D fat‐saturated gradient‐echo axial T1‐weighted flash 3D volumetric interpolated brain examination (VIBE) sequences. Assessment Two radiologists performed a weak annotation of the ground truth using bounding boxes. Based on this, the ground truth annotation was completed through autonomic and manual correction. The deep learning model using 3D U‐Net transformer (UNETR) was trained with this annotated dataset. The segmentation results of the test set were analyzed by quantitative and qualitative methods, and the regions were divided into whole breast and region of interest (ROI) within the bounding box. Statistical Tests As a quantitative method, we used the Dice similarity coefficient to evaluate the segmentation result. The volume correlation with the ground truth was evaluated with the Spearman correlation coefficient. Qualitatively, three readers independently evaluated the visual score in four scales. A P ‐value <0.05 was considered statistically significant. Results The deep learning model we developed achieved a median Dice similarity score of 0.75 and 0.89 for the whole breast and ROI, respectively. The volume correlation coefficient with respect to the ground truth volume was 0.82 and 0.86 for the whole breast and ROI, respectively. The mean visual score, as evaluated by three readers, was 3.4. Data Conclusion The proposed deep learning model with weak annotation may show good performance for 3D segmentations of breast cancer using DCE‐MRI. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈砍砍完成签到 ,获得积分10
刚刚
snon完成签到,获得积分10
刚刚
耶斯耶斯完成签到,获得积分10
刚刚
张文静发布了新的文献求助10
1秒前
1秒前
坦率以莲发布了新的文献求助10
1秒前
2秒前
爆米花应助xlgforever采纳,获得10
2秒前
小张完成签到 ,获得积分10
2秒前
陈陈发布了新的文献求助10
2秒前
香蕉觅云应助ddk六采纳,获得10
2秒前
手拿大炮完成签到,获得积分10
2秒前
2秒前
3秒前
SYLH应助果果采纳,获得10
3秒前
西西完成签到,获得积分10
5秒前
科研通AI2S应助bgt采纳,获得10
5秒前
5秒前
6秒前
大喜完成签到,获得积分10
6秒前
6秒前
爱因斯宣发布了新的文献求助10
6秒前
T拐拐发布了新的文献求助10
7秒前
saajim发布了新的文献求助10
7秒前
WQY完成签到,获得积分10
7秒前
共享精神应助威武的冷风采纳,获得10
7秒前
8秒前
老实巴交完成签到,获得积分10
9秒前
9秒前
9秒前
vinecho发布了新的文献求助30
9秒前
10秒前
tian完成签到,获得积分0
10秒前
10秒前
羞涩的渊思完成签到 ,获得积分10
11秒前
李爱国应助JoshuaChen采纳,获得10
11秒前
文章刻骨几人知完成签到,获得积分10
11秒前
一颗煤炭完成签到 ,获得积分10
12秒前
123发布了新的文献求助10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650