亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

3D Breast Cancer Segmentation in DCE‐MRI Using Deep Learning With Weak Annotation

基本事实 分割 人工智能 深度学习 计算机科学 注释 最小边界框 相关系数 乳腺癌 磁共振成像 相关性 人口 Sørensen–骰子系数 模式识别(心理学) 图像分割 机器学习 医学 数学 癌症 放射科 图像(数学) 几何学 内科学 环境卫生
作者
Ga Eun Park,Sung Hun Kim,Yoonho Nam,Junghwa Kang,Minjeong Park,Bong Joo Kang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (6): 2252-2262 被引量:11
标识
DOI:10.1002/jmri.28960
摘要

Background Deep learning models require large‐scale training to perform confidently, but obtaining annotated datasets in medical imaging is challenging. Weak annotation has emerged as a way to save time and effort. Purpose To develop a deep learning model for 3D breast cancer segmentation in dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) using weak annotation with reliable performance. Study Type Retrospective. Population Seven hundred and thirty‐six women with breast cancer from a single institution, divided into the development ( N = 544) and test dataset ( N = 192). Field Strength/Sequence 3.0‐T, 3D fat‐saturated gradient‐echo axial T1‐weighted flash 3D volumetric interpolated brain examination (VIBE) sequences. Assessment Two radiologists performed a weak annotation of the ground truth using bounding boxes. Based on this, the ground truth annotation was completed through autonomic and manual correction. The deep learning model using 3D U‐Net transformer (UNETR) was trained with this annotated dataset. The segmentation results of the test set were analyzed by quantitative and qualitative methods, and the regions were divided into whole breast and region of interest (ROI) within the bounding box. Statistical Tests As a quantitative method, we used the Dice similarity coefficient to evaluate the segmentation result. The volume correlation with the ground truth was evaluated with the Spearman correlation coefficient. Qualitatively, three readers independently evaluated the visual score in four scales. A P ‐value <0.05 was considered statistically significant. Results The deep learning model we developed achieved a median Dice similarity score of 0.75 and 0.89 for the whole breast and ROI, respectively. The volume correlation coefficient with respect to the ground truth volume was 0.82 and 0.86 for the whole breast and ROI, respectively. The mean visual score, as evaluated by three readers, was 3.4. Data Conclusion The proposed deep learning model with weak annotation may show good performance for 3D segmentations of breast cancer using DCE‐MRI. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jitianxing完成签到,获得积分20
4秒前
科目三应助科研通管家采纳,获得10
7秒前
科研通AI5应助jitianxing采纳,获得10
23秒前
沉默白桃完成签到 ,获得积分10
1分钟前
感动清炎完成签到,获得积分10
1分钟前
Ava应助oleskarabach采纳,获得10
1分钟前
3分钟前
领导范儿应助gszy1975采纳,获得10
4分钟前
靓丽的熠彤完成签到,获得积分10
4分钟前
4分钟前
四氧化三铁完成签到,获得积分10
4分钟前
5分钟前
云云发布了新的文献求助10
5分钟前
wuju完成签到,获得积分10
5分钟前
Raunio完成签到,获得积分10
5分钟前
共享精神应助科研通管家采纳,获得10
6分钟前
Tales完成签到 ,获得积分10
6分钟前
KINGAZX完成签到 ,获得积分10
7分钟前
武雨珍完成签到,获得积分10
7分钟前
7分钟前
gszy1975发布了新的文献求助10
7分钟前
Jasper应助科研通管家采纳,获得10
8分钟前
FashionBoy应助thchiang采纳,获得10
8分钟前
852应助陈杰采纳,获得10
8分钟前
科研通AI5应助马良采纳,获得10
9分钟前
小米的稻田完成签到 ,获得积分10
9分钟前
9分钟前
马良发布了新的文献求助10
10分钟前
Jasper应助专注的子骞采纳,获得10
10分钟前
10分钟前
10分钟前
10分钟前
DPmmm发布了新的文献求助10
10分钟前
11分钟前
现实的俊驰完成签到 ,获得积分10
11分钟前
Akim应助Frank采纳,获得10
12分钟前
13分钟前
再给我来点抽象的应助Jim采纳,获得10
13分钟前
科研通AI5应助榆果子采纳,获得10
14分钟前
fufufu123完成签到 ,获得积分10
14分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582395
求助须知:如何正确求助?哪些是违规求助? 4000118
关于积分的说明 12382192
捐赠科研通 3675087
什么是DOI,文献DOI怎么找? 2025689
邀请新用户注册赠送积分活动 1059330
科研通“疑难数据库(出版商)”最低求助积分说明 946014