A Theoretical Analysis of DeepWalk and Node2vec for Exact Recovery of Community Structures in Stochastic Blockmodels

数学 顶点(图论) 因式分解 组合数学 离散数学 算法 计算机科学 理论计算机科学 图形
作者
Yichi Zhang,Minh Tang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (2): 1065-1078 被引量:2
标识
DOI:10.1109/tpami.2023.3327631
摘要

Random-walk-based network embedding algorithms like DeepWalk and node2vec are widely used to obtain euclidean representation of the nodes in a network prior to performing downstream inference tasks. However, despite their impressive empirical performance, there is a lack of theoretical results explaining their large-sample behavior. In this paper, we study node2vec and DeepWalk through the perspective of matrix factorization. In particular, we analyze these algorithms in the setting of community detection for stochastic blockmodel graphs (and their degree-corrected variants). By exploiting the row-wise uniform perturbation bound for leading singular vectors, we derive high-probability error bounds between the matrix factorization-based node2vec/DeepWalk embeddings and their true counterparts, uniformly over all node embeddings. Based on strong concentration results, we further show the perfect membership recovery by node2vec/DeepWalk, followed by K-means/medians algorithms. Specifically, as the network becomes sparser, our results guarantee that with large enough window size and vertex number, applying K-means/medians on the matrix factorization-based node2vec embeddings can, with high probability, correctly recover the memberships of all vertices in a network generated from the stochastic blockmodel (or its degree-corrected variants). The theoretical justifications are mirrored in the numerical experiments and real data applications, for both the original node2vec and its matrix factorization variant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助科研通管家采纳,获得50
刚刚
FashionBoy应助科研通管家采纳,获得30
刚刚
考拉完成签到 ,获得积分10
刚刚
Alex应助科研通管家采纳,获得20
刚刚
阿尔图完成签到,获得积分10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
ddd应助科研通管家采纳,获得100
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
1秒前
he完成签到 ,获得积分10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
Jasper应助虚幻小丸子采纳,获得10
1秒前
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
1秒前
zxy应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
欣慰小丸子应助lhh采纳,获得10
2秒前
HCl完成签到,获得积分10
2秒前
开水发布了新的文献求助30
2秒前
灿烂千阳完成签到,获得积分10
3秒前
有你就足够完成签到,获得积分10
4秒前
啊标完成签到,获得积分10
4秒前
4秒前
暗芒完成签到,获得积分10
4秒前
攸宁完成签到 ,获得积分10
4秒前
5秒前
Wang发布了新的文献求助10
5秒前
siste发布了新的文献求助10
5秒前
听风轻语完成签到,获得积分10
5秒前
优秀剑愁完成签到 ,获得积分10
6秒前
cyw完成签到,获得积分10
6秒前
迟迟发布了新的文献求助10
6秒前
大模型应助文静秋双采纳,获得20
6秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960532
求助须知:如何正确求助?哪些是违规求助? 3506818
关于积分的说明 11132262
捐赠科研通 3239114
什么是DOI,文献DOI怎么找? 1789985
邀请新用户注册赠送积分活动 872079
科研通“疑难数据库(出版商)”最低求助积分说明 803128