A Theoretical Analysis of DeepWalk and Node2vec for Exact Recovery of Community Structures in Stochastic Blockmodels

数学 顶点(图论) 因式分解 组合数学 离散数学 算法 计算机科学 理论计算机科学 图形
作者
Yichi Zhang,Minh Tang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (2): 1065-1078 被引量:2
标识
DOI:10.1109/tpami.2023.3327631
摘要

Random-walk-based network embedding algorithms like DeepWalk and node2vec are widely used to obtain euclidean representation of the nodes in a network prior to performing downstream inference tasks. However, despite their impressive empirical performance, there is a lack of theoretical results explaining their large-sample behavior. In this paper, we study node2vec and DeepWalk through the perspective of matrix factorization. In particular, we analyze these algorithms in the setting of community detection for stochastic blockmodel graphs (and their degree-corrected variants). By exploiting the row-wise uniform perturbation bound for leading singular vectors, we derive high-probability error bounds between the matrix factorization-based node2vec/DeepWalk embeddings and their true counterparts, uniformly over all node embeddings. Based on strong concentration results, we further show the perfect membership recovery by node2vec/DeepWalk, followed by K-means/medians algorithms. Specifically, as the network becomes sparser, our results guarantee that with large enough window size and vertex number, applying K-means/medians on the matrix factorization-based node2vec embeddings can, with high probability, correctly recover the memberships of all vertices in a network generated from the stochastic blockmodel (or its degree-corrected variants). The theoretical justifications are mirrored in the numerical experiments and real data applications, for both the original node2vec and its matrix factorization variant.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
boyis完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
YR完成签到 ,获得积分10
4秒前
4秒前
4秒前
落寞剑成完成签到 ,获得积分10
5秒前
慕青应助WYN采纳,获得10
6秒前
6秒前
6秒前
温柔柜子发布了新的文献求助10
6秒前
8秒前
8秒前
Mito2009完成签到,获得积分10
8秒前
littleby发布了新的文献求助10
8秒前
sling116完成签到,获得积分10
10秒前
哈哈发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
阚曦完成签到,获得积分10
11秒前
Mito2009发布了新的文献求助10
11秒前
12秒前
追梦人完成签到,获得积分10
12秒前
顾矜应助sinlar采纳,获得10
14秒前
15秒前
ylkylk发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
online1881发布了新的文献求助10
17秒前
希望天下0贩的0应助liu采纳,获得10
18秒前
CAOHOU应助Mito2009采纳,获得10
18秒前
梅花笑发布了新的文献求助10
19秒前
Owen应助奋斗向南采纳,获得10
19秒前
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
温柔柜子发布了新的文献求助10
23秒前
桐桐应助笑点低的映梦采纳,获得10
23秒前
量子星尘发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382