A Theoretical Analysis of DeepWalk and Node2vec for Exact Recovery of Community Structures in Stochastic Blockmodels

数学 顶点(图论) 因式分解 组合数学 离散数学 算法 计算机科学 理论计算机科学 图形
作者
Yichi Zhang,Minh Tang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (2): 1065-1078 被引量:2
标识
DOI:10.1109/tpami.2023.3327631
摘要

Random-walk-based network embedding algorithms like DeepWalk and node2vec are widely used to obtain euclidean representation of the nodes in a network prior to performing downstream inference tasks. However, despite their impressive empirical performance, there is a lack of theoretical results explaining their large-sample behavior. In this paper, we study node2vec and DeepWalk through the perspective of matrix factorization. In particular, we analyze these algorithms in the setting of community detection for stochastic blockmodel graphs (and their degree-corrected variants). By exploiting the row-wise uniform perturbation bound for leading singular vectors, we derive high-probability error bounds between the matrix factorization-based node2vec/DeepWalk embeddings and their true counterparts, uniformly over all node embeddings. Based on strong concentration results, we further show the perfect membership recovery by node2vec/DeepWalk, followed by K-means/medians algorithms. Specifically, as the network becomes sparser, our results guarantee that with large enough window size and vertex number, applying K-means/medians on the matrix factorization-based node2vec embeddings can, with high probability, correctly recover the memberships of all vertices in a network generated from the stochastic blockmodel (or its degree-corrected variants). The theoretical justifications are mirrored in the numerical experiments and real data applications, for both the original node2vec and its matrix factorization variant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蓝莓吃太胖完成签到 ,获得积分10
1秒前
luoqin完成签到 ,获得积分10
1秒前
1秒前
CJPerformance发布了新的文献求助100
1秒前
研友_VZG7GZ应助李lll采纳,获得10
1秒前
水蜜桃幽灵完成签到,获得积分10
2秒前
任十三完成签到 ,获得积分10
2秒前
愉悦完成签到,获得积分10
2秒前
爆米花应助Nico多多看paper采纳,获得30
2秒前
你真是那个啊完成签到,获得积分10
2秒前
2秒前
一切顺利发布了新的文献求助10
3秒前
温暖的皮皮虾完成签到,获得积分10
3秒前
4秒前
朻安完成签到,获得积分10
5秒前
5秒前
caocao完成签到,获得积分10
5秒前
左一酱完成签到 ,获得积分10
5秒前
jianlv完成签到,获得积分10
5秒前
lion发布了新的文献求助10
5秒前
MiRoRo完成签到 ,获得积分10
6秒前
852应助zzz采纳,获得10
6秒前
留胡子的如花完成签到,获得积分10
6秒前
Triptolide完成签到,获得积分20
6秒前
6秒前
enterdawn完成签到,获得积分10
6秒前
7秒前
火星上的晓曼完成签到,获得积分10
7秒前
lisastream完成签到,获得积分10
7秒前
CJPerformance完成签到,获得积分10
7秒前
2025晨晨完成签到 ,获得积分10
8秒前
Sakura完成签到,获得积分10
8秒前
YZD完成签到,获得积分10
8秒前
细心的完成签到 ,获得积分10
8秒前
laohu发布了新的文献求助10
8秒前
Fsy发布了新的文献求助10
9秒前
悲凉的素发布了新的文献求助10
9秒前
9秒前
所所应助肖旭杭采纳,获得10
9秒前
Triptolide发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402308
求助须知:如何正确求助?哪些是违规求助? 4520855
关于积分的说明 14082461
捐赠科研通 4434876
什么是DOI,文献DOI怎么找? 2434481
邀请新用户注册赠送积分活动 1426661
关于科研通互助平台的介绍 1405415