已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Theoretical Analysis of DeepWalk and Node2vec for Exact Recovery of Community Structures in Stochastic Blockmodels

数学 顶点(图论) 因式分解 组合数学 离散数学 算法 计算机科学 理论计算机科学 图形
作者
Yichi Zhang,Minh Tang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (2): 1065-1078 被引量:2
标识
DOI:10.1109/tpami.2023.3327631
摘要

Random-walk-based network embedding algorithms like DeepWalk and node2vec are widely used to obtain euclidean representation of the nodes in a network prior to performing downstream inference tasks. However, despite their impressive empirical performance, there is a lack of theoretical results explaining their large-sample behavior. In this paper, we study node2vec and DeepWalk through the perspective of matrix factorization. In particular, we analyze these algorithms in the setting of community detection for stochastic blockmodel graphs (and their degree-corrected variants). By exploiting the row-wise uniform perturbation bound for leading singular vectors, we derive high-probability error bounds between the matrix factorization-based node2vec/DeepWalk embeddings and their true counterparts, uniformly over all node embeddings. Based on strong concentration results, we further show the perfect membership recovery by node2vec/DeepWalk, followed by K-means/medians algorithms. Specifically, as the network becomes sparser, our results guarantee that with large enough window size and vertex number, applying K-means/medians on the matrix factorization-based node2vec embeddings can, with high probability, correctly recover the memberships of all vertices in a network generated from the stochastic blockmodel (or its degree-corrected variants). The theoretical justifications are mirrored in the numerical experiments and real data applications, for both the original node2vec and its matrix factorization variant.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难难难发布了新的文献求助10
刚刚
2秒前
搜集达人应助茶暖采纳,获得10
4秒前
英俊的铭应助然大宝采纳,获得10
5秒前
sym522完成签到,获得积分10
7秒前
刻苦迎波发布了新的文献求助10
7秒前
蔡从安发布了新的文献求助10
7秒前
8秒前
灰色的乌完成签到,获得积分10
9秒前
10秒前
乐空思应助sym522采纳,获得30
11秒前
ding应助果果采纳,获得30
11秒前
14秒前
jjx1005完成签到 ,获得积分10
14秒前
李爱国应助不饱和环二酮采纳,获得10
15秒前
英姑应助he采纳,获得10
15秒前
Yjn发布了新的文献求助10
15秒前
安详的海风完成签到,获得积分10
16秒前
iwsaml完成签到 ,获得积分10
18秒前
包容的睫毛膏完成签到,获得积分10
20秒前
传奇3应助难难难采纳,获得10
20秒前
浮游应助蔡从安采纳,获得10
24秒前
十三发布了新的文献求助10
25秒前
好哥哥发布了新的文献求助10
26秒前
我是125完成签到,获得积分10
28秒前
源源完成签到,获得积分10
29秒前
31秒前
桐桐应助一口袋的风采纳,获得50
32秒前
pzh798419969完成签到,获得积分10
32秒前
SUP编外人员完成签到,获得积分10
33秒前
SciGPT应助Niki采纳,获得10
33秒前
33秒前
乐乐应助我是张铁柱·采纳,获得10
34秒前
jinger发布了新的文献求助10
35秒前
36秒前
欢欢发布了新的文献求助10
36秒前
38秒前
40秒前
领导范儿应助笠原May采纳,获得10
42秒前
眼睛大世开完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633998
求助须知:如何正确求助?哪些是违规求助? 4729911
关于积分的说明 14987292
捐赠科研通 4791783
什么是DOI,文献DOI怎么找? 2559051
邀请新用户注册赠送积分活动 1519536
关于科研通互助平台的介绍 1479718