A Theoretical Analysis of DeepWalk and Node2vec for Exact Recovery of Community Structures in Stochastic Blockmodels

数学 顶点(图论) 因式分解 组合数学 离散数学 算法 计算机科学 理论计算机科学 图形
作者
Yichi Zhang,Minh Tang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (2): 1065-1078 被引量:2
标识
DOI:10.1109/tpami.2023.3327631
摘要

Random-walk-based network embedding algorithms like DeepWalk and node2vec are widely used to obtain euclidean representation of the nodes in a network prior to performing downstream inference tasks. However, despite their impressive empirical performance, there is a lack of theoretical results explaining their large-sample behavior. In this paper, we study node2vec and DeepWalk through the perspective of matrix factorization. In particular, we analyze these algorithms in the setting of community detection for stochastic blockmodel graphs (and their degree-corrected variants). By exploiting the row-wise uniform perturbation bound for leading singular vectors, we derive high-probability error bounds between the matrix factorization-based node2vec/DeepWalk embeddings and their true counterparts, uniformly over all node embeddings. Based on strong concentration results, we further show the perfect membership recovery by node2vec/DeepWalk, followed by K-means/medians algorithms. Specifically, as the network becomes sparser, our results guarantee that with large enough window size and vertex number, applying K-means/medians on the matrix factorization-based node2vec embeddings can, with high probability, correctly recover the memberships of all vertices in a network generated from the stochastic blockmodel (or its degree-corrected variants). The theoretical justifications are mirrored in the numerical experiments and real data applications, for both the original node2vec and its matrix factorization variant.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈镜子完成签到 ,获得积分10
刚刚
Xu完成签到,获得积分10
1秒前
微笑惜海完成签到,获得积分20
1秒前
可耐的紫夏完成签到,获得积分10
1秒前
出其东门完成签到,获得积分10
1秒前
lvwubin完成签到,获得积分10
1秒前
1秒前
1秒前
时尚的梦曼完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
苏休夫发布了新的文献求助10
2秒前
沉默问夏完成签到 ,获得积分10
2秒前
wd发布了新的文献求助10
3秒前
王佳豪发布了新的文献求助10
3秒前
认真浩宇完成签到,获得积分10
4秒前
伴征阳完成签到 ,获得积分10
4秒前
热心的小馒头完成签到 ,获得积分10
4秒前
suesue完成签到,获得积分10
4秒前
4秒前
阿奇霉素完成签到 ,获得积分20
5秒前
amberzyc应助何双采纳,获得10
5秒前
RunsenXu完成签到,获得积分10
5秒前
木木完成签到,获得积分10
5秒前
听话的文涛完成签到,获得积分10
6秒前
Zoe完成签到,获得积分10
6秒前
logan完成签到,获得积分0
6秒前
缓慢千易完成签到,获得积分10
7秒前
wjr完成签到,获得积分10
7秒前
独自受罪完成签到 ,获得积分10
7秒前
lzx完成签到,获得积分10
7秒前
懵懂的琦完成签到 ,获得积分10
8秒前
Sci完成签到,获得积分20
8秒前
ruandb完成签到,获得积分10
8秒前
沉舟完成签到 ,获得积分10
8秒前
8秒前
冷静灵竹完成签到,获得积分10
8秒前
9秒前
小波完成签到,获得积分10
9秒前
学生信的大叔完成签到,获得积分10
10秒前
666666完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664967
求助须知:如何正确求助?哪些是违规求助? 4873787
关于积分的说明 15110464
捐赠科研通 4824067
什么是DOI,文献DOI怎么找? 2582622
邀请新用户注册赠送积分活动 1536541
关于科研通互助平台的介绍 1495147