已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Blockchain-Based Clustered Federated Learning for Non-Intrusive Load Monitoring

计算机科学 差别隐私 块链 服务器 云计算 聚类分析 个性化 分布式计算 信息隐私 机器学习 数据挖掘 人工智能 计算机网络 计算机安全 万维网 操作系统
作者
Tianjing Wang,Zhaoyang Dong
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 2348-2361 被引量:6
标识
DOI:10.1109/tsg.2023.3326194
摘要

To address privacy concerns of state-of-the-art centralized machine learning in non-intrusive load monitoring (NILM) applications, the adoption of federated learning (FL) has emerged as a solution to transfer training processes from cloud servers to edge devices. Nevertheless, conventional FL encounters several challenges including architecture safety, incentive mechanism, computing cost, and personalization. To overcome these challenges, the study proposes a self-motivated decentralized FL scheme for NILM, named blockchain-based clustered FL, by combining blockchain mechanism with clustered FL, incentivizing suitable clients to participate in FL by offering rewards based on data size and model performance. Under NILM-related differential privacy protections, the Laplace noise is injected into the first layer of neural networks in the blockchain-based clustered FL, and a decay factor is employed to mitigate the adverse effects of excessive noise on performance. Lightweight training techniques such as data quantization and weight pruning are employed to reduce computational complexity. Furthermore, a clustering approach is utilized to create multiple global models, thereby enhancing the model personalization degree. It is verified by the case study that the blockchain-based clustered FL outperforms the conventional FL in both accuracy and operation risk, and offers much superior performance and a more robust model compared to local training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菠萝完成签到 ,获得积分0
刚刚
龅牙苏发布了新的文献求助10
刚刚
NexusExplorer应助田鸿平采纳,获得10
1秒前
1秒前
文献小白完成签到,获得积分10
2秒前
Amber发布了新的文献求助10
2秒前
黎明森发布了新的文献求助10
3秒前
3秒前
王磊完成签到 ,获得积分10
3秒前
So完成签到 ,获得积分10
4秒前
5秒前
7秒前
星辰大海应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得20
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
俭朴的半雪完成签到 ,获得积分10
10秒前
12秒前
噗愣噗愣地刚发芽完成签到 ,获得积分10
12秒前
米米发布了新的文献求助10
13秒前
14秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434