Blockchain-Based Clustered Federated Learning for Non-Intrusive Load Monitoring

计算机科学 差别隐私 块链 服务器 云计算 聚类分析 个性化 分布式计算 信息隐私 机器学习 数据挖掘 人工智能 计算机网络 计算机安全 操作系统 万维网
作者
Tianjing Wang,Zhaoyang Dong
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 2348-2361 被引量:6
标识
DOI:10.1109/tsg.2023.3326194
摘要

To address privacy concerns of state-of-the-art centralized machine learning in non-intrusive load monitoring (NILM) applications, the adoption of federated learning (FL) has emerged as a solution to transfer training processes from cloud servers to edge devices. Nevertheless, conventional FL encounters several challenges including architecture safety, incentive mechanism, computing cost, and personalization. To overcome these challenges, the study proposes a self-motivated decentralized FL scheme for NILM, named blockchain-based clustered FL, by combining blockchain mechanism with clustered FL, incentivizing suitable clients to participate in FL by offering rewards based on data size and model performance. Under NILM-related differential privacy protections, the Laplace noise is injected into the first layer of neural networks in the blockchain-based clustered FL, and a decay factor is employed to mitigate the adverse effects of excessive noise on performance. Lightweight training techniques such as data quantization and weight pruning are employed to reduce computational complexity. Furthermore, a clustering approach is utilized to create multiple global models, thereby enhancing the model personalization degree. It is verified by the case study that the blockchain-based clustered FL outperforms the conventional FL in both accuracy and operation risk, and offers much superior performance and a more robust model compared to local training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
snutcc完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
哦哦完成签到,获得积分10
1秒前
寒冷毛衣发布了新的文献求助10
2秒前
YE发布了新的文献求助10
3秒前
kevin926完成签到 ,获得积分10
4秒前
刘浩完成签到,获得积分10
4秒前
迷路幻柏完成签到,获得积分10
5秒前
6秒前
bkagyin应助totoro采纳,获得10
6秒前
开朗的踏歌完成签到,获得积分10
7秒前
在水一方应助DDd采纳,获得10
7秒前
落叶解三秋完成签到,获得积分10
8秒前
8秒前
9秒前
轻松的惜芹应助徐合川采纳,获得300
9秒前
9秒前
豪子完成签到 ,获得积分10
10秒前
魏少爷发布了新的文献求助10
10秒前
赘婿应助小木安华采纳,获得10
11秒前
SYLH应助goalkeeper采纳,获得50
11秒前
11秒前
科研通AI2S应助无情的宛儿采纳,获得10
11秒前
Miller发布了新的文献求助10
12秒前
寒冷毛衣完成签到,获得积分20
13秒前
柚子完成签到,获得积分10
13秒前
LiangHu发布了新的文献求助10
14秒前
林兼昆发布了新的文献求助10
15秒前
艾小晗发布了新的文献求助10
15秒前
16秒前
姚华发布了新的文献求助10
16秒前
卢沫含关注了科研通微信公众号
16秒前
科研通AI5应助小盒采纳,获得150
16秒前
rinki01完成签到,获得积分10
18秒前
19秒前
科目三应助xx采纳,获得10
19秒前
甜美不评发布了新的文献求助10
19秒前
柚子发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980224
求助须知:如何正确求助?哪些是违规求助? 3524191
关于积分的说明 11220260
捐赠科研通 3261653
什么是DOI,文献DOI怎么找? 1800792
邀请新用户注册赠送积分活动 879296
科研通“疑难数据库(出版商)”最低求助积分说明 807232