TSSFN: Transformer-based self-supervised fusion network for low-quality fundus image enhancement

计算机科学 眼底(子宫) 人工智能 计算机视觉 图像质量 模式识别(心理学) 编码器 卷积神经网络 图像(数学) 医学 眼科 操作系统
作者
Yinggang Gao,Wanjun Zhang,Huifang He,Lvchen Cao,Yonghua Zhang,Ziqing Huang,Xiuming Zhao
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:89: 105768-105768 被引量:1
标识
DOI:10.1016/j.bspc.2023.105768
摘要

Fundus images are used to assist the diagnoses of ocular diseases, and a high-quality fundus image with more details makes clinical diagnostic results more reliable. However, the quality of fundus images is often unsatisfactory due to the turbidity of refractive medium and the doctor-patient cooperation. To enhance the low-quality fundus images, a transformer-based self-supervised network is proposed. During the training phase, an encoder-decoder-based network is introduced. To counteract the drawbacks of establishing long-term dependencies in the convolutional neural network (CNN), the encoder composed of vision transformer and CNN is proposed so that the global and local information of fundus images is fully extracted. On this basis, three reconstruction tasks with self-supervised constraints are designed to enable the network to extract features from different degenerated images. During the testing phase, a low-quality fundus image is decomposed into three feature layers of reverse, illumination, and detail, and then the multi-layer features are fused via the network. To demonstrate the effectiveness of the proposed method, the non-uniform illumination and blurry fundus images are tested. The average scores of NIQE on underexposed, blurred, and overexposed fundus images are 3.03, 2.98, and 2.80, respectively. The average scores of BRISQUE on underexposed, blurred, and overexposed fundus images are 40.32, 40.55, and 39.76, respectively. The average score of subjective evaluation by three ophthalmologists is 61.17%. Compared with the existing methods, the proposed method achieves the superior performance in both subjective and objective evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋水完成签到,获得积分10
刚刚
Czt发布了新的文献求助10
刚刚
冷酷的葶发布了新的文献求助10
刚刚
1秒前
yangkaiyu完成签到,获得积分10
1秒前
英俊的铭应助章念波采纳,获得10
1秒前
2秒前
廿三应助科研通管家采纳,获得10
2秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
阿尔文完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
王雪完成签到 ,获得积分20
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
8R60d8应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得30
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
在水一方应助妮妮采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
空谷新苗发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4962268
求助须知:如何正确求助?哪些是违规求助? 4222276
关于积分的说明 13150413
捐赠科研通 4006465
什么是DOI,文献DOI怎么找? 2193017
邀请新用户注册赠送积分活动 1206728
关于科研通互助平台的介绍 1118904