TSSFN: Transformer-based self-supervised fusion network for low-quality fundus image enhancement

计算机科学 眼底(子宫) 人工智能 计算机视觉 图像质量 模式识别(心理学) 编码器 卷积神经网络 图像(数学) 医学 眼科 操作系统
作者
Yinggang Gao,Wanjun Zhang,Huifang He,Lvchen Cao,Yonghua Zhang,Ziqing Huang,Xiuming Zhao
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:89: 105768-105768 被引量:1
标识
DOI:10.1016/j.bspc.2023.105768
摘要

Fundus images are used to assist the diagnoses of ocular diseases, and a high-quality fundus image with more details makes clinical diagnostic results more reliable. However, the quality of fundus images is often unsatisfactory due to the turbidity of refractive medium and the doctor-patient cooperation. To enhance the low-quality fundus images, a transformer-based self-supervised network is proposed. During the training phase, an encoder-decoder-based network is introduced. To counteract the drawbacks of establishing long-term dependencies in the convolutional neural network (CNN), the encoder composed of vision transformer and CNN is proposed so that the global and local information of fundus images is fully extracted. On this basis, three reconstruction tasks with self-supervised constraints are designed to enable the network to extract features from different degenerated images. During the testing phase, a low-quality fundus image is decomposed into three feature layers of reverse, illumination, and detail, and then the multi-layer features are fused via the network. To demonstrate the effectiveness of the proposed method, the non-uniform illumination and blurry fundus images are tested. The average scores of NIQE on underexposed, blurred, and overexposed fundus images are 3.03, 2.98, and 2.80, respectively. The average scores of BRISQUE on underexposed, blurred, and overexposed fundus images are 40.32, 40.55, and 39.76, respectively. The average score of subjective evaluation by three ophthalmologists is 61.17%. Compared with the existing methods, the proposed method achieves the superior performance in both subjective and objective evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
1秒前
匆匆完成签到,获得积分0
3秒前
4秒前
共享精神应助容cc采纳,获得10
6秒前
Soul459完成签到 ,获得积分10
8秒前
9秒前
CHEN123456发布了新的文献求助10
10秒前
12秒前
华仔应助腼腆的寄灵采纳,获得10
13秒前
15秒前
qiuqiu发布了新的文献求助10
15秒前
16秒前
ddli发布了新的文献求助10
17秒前
zqy99723发布了新的文献求助20
17秒前
17秒前
www268完成签到 ,获得积分10
20秒前
20秒前
21秒前
欣喜石头发布了新的文献求助10
22秒前
23秒前
CodeCraft应助文献下载中采纳,获得10
23秒前
Lucas应助qiuqiu采纳,获得10
25秒前
25秒前
Sweety-完成签到 ,获得积分10
26秒前
26秒前
CHEN123456完成签到,获得积分20
27秒前
成就的艳一完成签到,获得积分10
28秒前
科研菜鸟完成签到,获得积分10
29秒前
30秒前
华仔应助xx采纳,获得10
31秒前
34秒前
丘比特应助lyy66964193采纳,获得10
34秒前
踏实含之发布了新的文献求助10
37秒前
39秒前
追寻烤鸡完成签到,获得积分10
41秒前
李健应助科研通管家采纳,获得10
45秒前
充电宝应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
英姑应助科研通管家采纳,获得20
45秒前
46秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994236
求助须知:如何正确求助?哪些是违规求助? 3534710
关于积分的说明 11266276
捐赠科研通 3274624
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809731