TSSFN: Transformer-based self-supervised fusion network for low-quality fundus image enhancement

计算机科学 眼底(子宫) 人工智能 计算机视觉 图像质量 模式识别(心理学) 编码器 卷积神经网络 图像(数学) 医学 眼科 操作系统
作者
Yinggang Gao,Wanjun Zhang,Huifang He,Lvchen Cao,Yonghua Zhang,Ziqing Huang,Xiuming Zhao
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:89: 105768-105768 被引量:1
标识
DOI:10.1016/j.bspc.2023.105768
摘要

Fundus images are used to assist the diagnoses of ocular diseases, and a high-quality fundus image with more details makes clinical diagnostic results more reliable. However, the quality of fundus images is often unsatisfactory due to the turbidity of refractive medium and the doctor-patient cooperation. To enhance the low-quality fundus images, a transformer-based self-supervised network is proposed. During the training phase, an encoder-decoder-based network is introduced. To counteract the drawbacks of establishing long-term dependencies in the convolutional neural network (CNN), the encoder composed of vision transformer and CNN is proposed so that the global and local information of fundus images is fully extracted. On this basis, three reconstruction tasks with self-supervised constraints are designed to enable the network to extract features from different degenerated images. During the testing phase, a low-quality fundus image is decomposed into three feature layers of reverse, illumination, and detail, and then the multi-layer features are fused via the network. To demonstrate the effectiveness of the proposed method, the non-uniform illumination and blurry fundus images are tested. The average scores of NIQE on underexposed, blurred, and overexposed fundus images are 3.03, 2.98, and 2.80, respectively. The average scores of BRISQUE on underexposed, blurred, and overexposed fundus images are 40.32, 40.55, and 39.76, respectively. The average score of subjective evaluation by three ophthalmologists is 61.17%. Compared with the existing methods, the proposed method achieves the superior performance in both subjective and objective evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkk完成签到 ,获得积分10
刚刚
刚刚
3秒前
schen完成签到,获得积分10
3秒前
MrIShelter完成签到,获得积分10
3秒前
陈小小关注了科研通微信公众号
3秒前
木木酱发布了新的文献求助10
4秒前
香蕉觅云应助haning采纳,获得10
4秒前
美满艳完成签到,获得积分20
4秒前
矮小的芷雪完成签到,获得积分10
4秒前
dyfsj发布了新的文献求助10
5秒前
Tt发布了新的文献求助10
5秒前
爆米花应助ADAM采纳,获得10
6秒前
SunnyZhou发布了新的文献求助10
6秒前
DLY发布了新的文献求助10
7秒前
7秒前
彭彭完成签到,获得积分10
7秒前
美满艳发布了新的文献求助10
7秒前
7秒前
yunchen完成签到,获得积分10
8秒前
开心的桔子完成签到 ,获得积分10
8秒前
8秒前
Hyll完成签到,获得积分10
9秒前
与可完成签到,获得积分10
9秒前
9秒前
kiki发布了新的文献求助10
10秒前
耿大海完成签到,获得积分10
10秒前
慕青应助喵喵酱采纳,获得10
10秒前
英俊的铭应助周斌采纳,获得10
11秒前
dyfsj完成签到,获得积分10
11秒前
morii发布了新的文献求助10
11秒前
12秒前
liyyyyy完成签到,获得积分20
12秒前
天天快乐应助KASTTTTTT采纳,获得10
12秒前
酷波er应助唠叨的可燕采纳,获得10
12秒前
小k发布了新的文献求助10
12秒前
虚幻天空发布了新的文献求助10
13秒前
珍狗发布了新的文献求助10
13秒前
阳光的电脑完成签到,获得积分10
14秒前
小马甲应助彭彭采纳,获得10
14秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157139
求助须知:如何正确求助?哪些是违规求助? 2808445
关于积分的说明 7877659
捐赠科研通 2466978
什么是DOI,文献DOI怎么找? 1313089
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919