TSSFN: Transformer-based self-supervised fusion network for low-quality fundus image enhancement

计算机科学 眼底(子宫) 人工智能 计算机视觉 图像质量 模式识别(心理学) 编码器 卷积神经网络 图像(数学) 医学 眼科 操作系统
作者
Yinggang Gao,Wanjun Zhang,Huifang He,Lvchen Cao,Yonghua Zhang,Ziqing Huang,Xiuming Zhao
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:89: 105768-105768 被引量:1
标识
DOI:10.1016/j.bspc.2023.105768
摘要

Fundus images are used to assist the diagnoses of ocular diseases, and a high-quality fundus image with more details makes clinical diagnostic results more reliable. However, the quality of fundus images is often unsatisfactory due to the turbidity of refractive medium and the doctor-patient cooperation. To enhance the low-quality fundus images, a transformer-based self-supervised network is proposed. During the training phase, an encoder-decoder-based network is introduced. To counteract the drawbacks of establishing long-term dependencies in the convolutional neural network (CNN), the encoder composed of vision transformer and CNN is proposed so that the global and local information of fundus images is fully extracted. On this basis, three reconstruction tasks with self-supervised constraints are designed to enable the network to extract features from different degenerated images. During the testing phase, a low-quality fundus image is decomposed into three feature layers of reverse, illumination, and detail, and then the multi-layer features are fused via the network. To demonstrate the effectiveness of the proposed method, the non-uniform illumination and blurry fundus images are tested. The average scores of NIQE on underexposed, blurred, and overexposed fundus images are 3.03, 2.98, and 2.80, respectively. The average scores of BRISQUE on underexposed, blurred, and overexposed fundus images are 40.32, 40.55, and 39.76, respectively. The average score of subjective evaluation by three ophthalmologists is 61.17%. Compared with the existing methods, the proposed method achieves the superior performance in both subjective and objective evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
abner完成签到,获得积分10
刚刚
1秒前
1秒前
zzw完成签到,获得积分10
1秒前
坦率的面包完成签到 ,获得积分10
2秒前
烟花应助小鱼干采纳,获得10
2秒前
科研通AI6应助鲸鱼采纳,获得10
3秒前
4秒前
lululu完成签到 ,获得积分10
4秒前
4秒前
qi发布了新的文献求助10
5秒前
Owen应助hhgcc采纳,获得10
5秒前
斯文静竹发布了新的文献求助10
5秒前
Miyya完成签到,获得积分10
5秒前
Ava应助Lxxixixi采纳,获得10
5秒前
yl发布了新的文献求助10
6秒前
拉长的秋白完成签到 ,获得积分10
7秒前
7秒前
7秒前
怡春院李老鸨完成签到,获得积分10
7秒前
科研通AI6应助迅速的宛海采纳,获得10
8秒前
8秒前
9秒前
bingo完成签到,获得积分10
9秒前
彭于晏应助zgd采纳,获得10
9秒前
乌冬面发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
番茄爱喝粥完成签到,获得积分10
13秒前
13秒前
livian发布了新的文献求助10
13秒前
DL发布了新的文献求助10
14秒前
14秒前
言西早完成签到 ,获得积分10
15秒前
WWWUBING完成签到,获得积分10
15秒前
15秒前
红柚完成签到,获得积分10
17秒前
17秒前
李爱国应助tdtk采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871