亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature detection of mineral zoning in spiral slope flow under complex conditions based on improved YOLOv5 algorithm

计算机科学 特征(语言学) 算法 人工智能 模糊逻辑 盈利能力指数 数据挖掘 模式识别(心理学) 财务 语言学 哲学 经济
作者
You Keshun,Huizhong Liu
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (1): 016001-016001 被引量:30
标识
DOI:10.1088/1402-4896/ad0f7d
摘要

Abstract In actual processing plants, the quality and efficiency of the traditional spiral slope flow concentrator still rely on workers to observe the changes in the mineral belt. However, in realistic complex working conditions, the formation of mineral separation zones is subject to large uncertainties, and coupled with the limited efforts, experience, and responsibility of workers, it becomes important to free up labour and improve the efficiency and profitability of the beneficiation plant. Therefore, to solve the problem of difficult detection of fuzzy small target mineral separation point features in real scenes, an improved YOLOv5-based algorithm is proposed. Firstly, the dataset quality is well improved by image enhancement and pre-processing techniques, after that an innovative CASM attention mechanism is added to the backbone of the YOLOv5 model, followed by a multi-scale feature output and prediction enhancement in the neck part of the model, and an optimized loss function is designed to optimize the whole feature learning process. The improved effect of the model and the specific detection performance were tested using real mine belt image datasets, the ablation experiment verified the comprehensive effectiveness of the proposed improved method and finally compared it with the existing high-level attention mechanism and target detection algorithms. The experimental results show that the improved YOLOv5 algorithm proposed in this study has the best overall detection performance carrying a MAP of 0.954, which is over 20% better than YOLOv5. It is worth mentioning that the improvement to achieve this performance only increases the parameter values by 0.8M and GFLOPs by 1.8, moreover, in terms of the inference speed, it also achieves a respectable 63 FPS, implying that the proposed improved method achieves a better balance between the performance enhancement and the computational complexity of the model, the overall detection results fully satisfy the industrial requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chengxue完成签到,获得积分10
1秒前
洁净路灯发布了新的文献求助10
2秒前
3秒前
sfwrbh发布了新的文献求助10
7秒前
14秒前
学不完了完成签到 ,获得积分10
16秒前
打打应助可靠的寒风采纳,获得10
26秒前
29秒前
30秒前
张露发布了新的文献求助10
32秒前
Lucas应助张露采纳,获得10
39秒前
sfwrbh发布了新的文献求助10
42秒前
48秒前
wanci应助sfwrbh采纳,获得10
50秒前
Lucas应助yo采纳,获得10
50秒前
洁净路灯完成签到,获得积分10
55秒前
59秒前
1分钟前
1分钟前
chenhui完成签到,获得积分10
1分钟前
Jin_ashley完成签到,获得积分10
1分钟前
1分钟前
UP完成签到,获得积分20
1分钟前
Jin_ashley发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
我是猪完成签到,获得积分10
1分钟前
1分钟前
江枫渔火完成签到 ,获得积分10
1分钟前
yo发布了新的文献求助10
1分钟前
2分钟前
2分钟前
小o关注了科研通微信公众号
2分钟前
2分钟前
张露发布了新的文献求助10
2分钟前
2分钟前
芒果完成签到 ,获得积分10
2分钟前
andrele发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595676
求助须知:如何正确求助?哪些是违规求助? 4680968
关于积分的说明 14818069
捐赠科研通 4651636
什么是DOI,文献DOI怎么找? 2535574
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469754