Feature detection of mineral zoning in spiral slope flow under complex conditions based on improved YOLOv5 algorithm

计算机科学 特征(语言学) 算法 人工智能 模糊逻辑 盈利能力指数 数据挖掘 模式识别(心理学) 财务 语言学 哲学 经济
作者
You Keshun,Huizhong Liu
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (1): 016001-016001 被引量:30
标识
DOI:10.1088/1402-4896/ad0f7d
摘要

Abstract In actual processing plants, the quality and efficiency of the traditional spiral slope flow concentrator still rely on workers to observe the changes in the mineral belt. However, in realistic complex working conditions, the formation of mineral separation zones is subject to large uncertainties, and coupled with the limited efforts, experience, and responsibility of workers, it becomes important to free up labour and improve the efficiency and profitability of the beneficiation plant. Therefore, to solve the problem of difficult detection of fuzzy small target mineral separation point features in real scenes, an improved YOLOv5-based algorithm is proposed. Firstly, the dataset quality is well improved by image enhancement and pre-processing techniques, after that an innovative CASM attention mechanism is added to the backbone of the YOLOv5 model, followed by a multi-scale feature output and prediction enhancement in the neck part of the model, and an optimized loss function is designed to optimize the whole feature learning process. The improved effect of the model and the specific detection performance were tested using real mine belt image datasets, the ablation experiment verified the comprehensive effectiveness of the proposed improved method and finally compared it with the existing high-level attention mechanism and target detection algorithms. The experimental results show that the improved YOLOv5 algorithm proposed in this study has the best overall detection performance carrying a MAP of 0.954, which is over 20% better than YOLOv5. It is worth mentioning that the improvement to achieve this performance only increases the parameter values by 0.8M and GFLOPs by 1.8, moreover, in terms of the inference speed, it also achieves a respectable 63 FPS, implying that the proposed improved method achieves a better balance between the performance enhancement and the computational complexity of the model, the overall detection results fully satisfy the industrial requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于木完成签到 ,获得积分10
1秒前
2秒前
2秒前
科研q完成签到 ,获得积分10
2秒前
hnxxangel发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
嘉悦发布了新的文献求助10
4秒前
5秒前
5秒前
星辰大海应助hnxxangel采纳,获得10
7秒前
Lifel发布了新的文献求助10
7秒前
LZJ发布了新的文献求助10
8秒前
JJ发布了新的文献求助10
10秒前
思维隋发布了新的文献求助10
10秒前
科研通AI6应助爱吃香菜采纳,获得10
14秒前
14秒前
14秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
阳佟水蓉完成签到,获得积分10
17秒前
18秒前
沉静的蜗牛完成签到,获得积分10
19秒前
19秒前
sakura完成签到,获得积分10
20秒前
20秒前
花花发布了新的文献求助10
22秒前
sakura发布了新的文献求助10
24秒前
25秒前
Jasper应助典希子采纳,获得10
26秒前
27秒前
明亮不乐完成签到,获得积分20
29秒前
29秒前
30秒前
努力学习ing完成签到 ,获得积分10
31秒前
jinjun发布了新的文献求助10
31秒前
32秒前
科研通AI6应助思7采纳,获得10
33秒前
33秒前
bkg发布了新的文献求助10
34秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454502
求助须知:如何正确求助?哪些是违规求助? 4561872
关于积分的说明 14283729
捐赠科研通 4485731
什么是DOI,文献DOI怎么找? 2456949
邀请新用户注册赠送积分活动 1447620
关于科研通互助平台的介绍 1422846