Feature detection of mineral zoning in spiral slope flow under complex conditions based on improved YOLOv5 algorithm

计算机科学 特征(语言学) 算法 人工智能 模糊逻辑 盈利能力指数 数据挖掘 模式识别(心理学) 哲学 语言学 财务 经济
作者
You Keshun,Huizhong Liu
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (1): 016001-016001 被引量:26
标识
DOI:10.1088/1402-4896/ad0f7d
摘要

Abstract In actual processing plants, the quality and efficiency of the traditional spiral slope flow concentrator still rely on workers to observe the changes in the mineral belt. However, in realistic complex working conditions, the formation of mineral separation zones is subject to large uncertainties, and coupled with the limited efforts, experience, and responsibility of workers, it becomes important to free up labour and improve the efficiency and profitability of the beneficiation plant. Therefore, to solve the problem of difficult detection of fuzzy small target mineral separation point features in real scenes, an improved YOLOv5-based algorithm is proposed. Firstly, the dataset quality is well improved by image enhancement and pre-processing techniques, after that an innovative CASM attention mechanism is added to the backbone of the YOLOv5 model, followed by a multi-scale feature output and prediction enhancement in the neck part of the model, and an optimized loss function is designed to optimize the whole feature learning process. The improved effect of the model and the specific detection performance were tested using real mine belt image datasets, the ablation experiment verified the comprehensive effectiveness of the proposed improved method and finally compared it with the existing high-level attention mechanism and target detection algorithms. The experimental results show that the improved YOLOv5 algorithm proposed in this study has the best overall detection performance carrying a MAP of 0.954, which is over 20% better than YOLOv5. It is worth mentioning that the improvement to achieve this performance only increases the parameter values by 0.8M and GFLOPs by 1.8, moreover, in terms of the inference speed, it also achieves a respectable 63 FPS, implying that the proposed improved method achieves a better balance between the performance enhancement and the computational complexity of the model, the overall detection results fully satisfy the industrial requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李钧鹏发布了新的文献求助10
1秒前
李小宁完成签到,获得积分10
1秒前
大方太清完成签到 ,获得积分10
1秒前
ms完成签到,获得积分10
4秒前
搜集达人应助娇气的雁兰采纳,获得10
5秒前
5秒前
快让我滚蛋毕业完成签到,获得积分10
6秒前
6秒前
CharlotteBlue应助科研通管家采纳,获得150
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
8秒前
猪猪hero应助李钧鹏采纳,获得10
11秒前
11秒前
shinn发布了新的文献求助10
12秒前
如意2023发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
万能图书馆应助体贴汽车采纳,获得10
15秒前
123完成签到,获得积分10
16秒前
17秒前
许许驳回了思源应助
17秒前
ENIX完成签到 ,获得积分10
18秒前
感动丸子完成签到,获得积分10
18秒前
666发布了新的文献求助10
18秒前
19秒前
风趣的涵柏完成签到,获得积分10
19秒前
seven完成签到,获得积分10
22秒前
mty发布了新的文献求助10
22秒前
大威德完成签到,获得积分10
24秒前
上官若男应助yiy采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967175
求助须知:如何正确求助?哪些是违规求助? 3512515
关于积分的说明 11163672
捐赠科研通 3247423
什么是DOI,文献DOI怎么找? 1793810
邀请新用户注册赠送积分活动 874616
科研通“疑难数据库(出版商)”最低求助积分说明 804488