Feature detection of mineral zoning in spiral slope flow under complex conditions based on improved YOLOv5 algorithm

计算机科学 特征(语言学) 算法 人工智能 模糊逻辑 盈利能力指数 数据挖掘 模式识别(心理学) 财务 语言学 哲学 经济
作者
You Keshun,Huizhong Liu
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (1): 016001-016001 被引量:19
标识
DOI:10.1088/1402-4896/ad0f7d
摘要

Abstract In actual processing plants, the quality and efficiency of the traditional spiral slope flow concentrator still rely on workers to observe the changes in the mineral belt. However, in realistic complex working conditions, the formation of mineral separation zones is subject to large uncertainties, and coupled with the limited efforts, experience, and responsibility of workers, it becomes important to free up labour and improve the efficiency and profitability of the beneficiation plant. Therefore, to solve the problem of difficult detection of fuzzy small target mineral separation point features in real scenes, an improved YOLOv5-based algorithm is proposed. Firstly, the dataset quality is well improved by image enhancement and pre-processing techniques, after that an innovative CASM attention mechanism is added to the backbone of the YOLOv5 model, followed by a multi-scale feature output and prediction enhancement in the neck part of the model, and an optimized loss function is designed to optimize the whole feature learning process. The improved effect of the model and the specific detection performance were tested using real mine belt image datasets, the ablation experiment verified the comprehensive effectiveness of the proposed improved method and finally compared it with the existing high-level attention mechanism and target detection algorithms. The experimental results show that the improved YOLOv5 algorithm proposed in this study has the best overall detection performance carrying a MAP of 0.954, which is over 20% better than YOLOv5. It is worth mentioning that the improvement to achieve this performance only increases the parameter values by 0.8M and GFLOPs by 1.8, moreover, in terms of the inference speed, it also achieves a respectable 63 FPS, implying that the proposed improved method achieves a better balance between the performance enhancement and the computational complexity of the model, the overall detection results fully satisfy the industrial requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
susu应助曼冬采纳,获得10
刚刚
18822596238完成签到,获得积分20
刚刚
Akim应助yolo采纳,获得10
1秒前
szuuuu发布了新的文献求助10
1秒前
1秒前
1秒前
J1an完成签到,获得积分10
2秒前
3秒前
L&M发布了新的文献求助10
3秒前
wyx完成签到,获得积分10
3秒前
3秒前
干秋白完成签到,获得积分10
4秒前
kangkang完成签到,获得积分10
5秒前
ssl完成签到 ,获得积分10
5秒前
adazbd完成签到,获得积分10
5秒前
超级的清涟完成签到,获得积分10
6秒前
6秒前
Adi完成签到,获得积分10
6秒前
自然立辉完成签到,获得积分10
6秒前
寻寻觅觅冷冷清清完成签到,获得积分10
7秒前
观妙散人完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
佑佑完成签到,获得积分10
9秒前
文艺的擎发布了新的文献求助10
10秒前
11秒前
自然立辉发布了新的文献求助10
11秒前
12秒前
12秒前
柚子发布了新的文献求助10
13秒前
Singularity应助L&M采纳,获得10
13秒前
无花果应助L&M采纳,获得10
13秒前
14秒前
大模型应助wsc采纳,获得10
14秒前
神勇的天菱完成签到,获得积分10
14秒前
14秒前
jiana发布了新的文献求助10
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3118763
求助须知:如何正确求助?哪些是违规求助? 2768996
关于积分的说明 7699512
捐赠科研通 2424366
什么是DOI,文献DOI怎么找? 1287781
科研通“疑难数据库(出版商)”最低求助积分说明 620629
版权声明 599962