Feature detection of mineral zoning in spiral slope flow under complex conditions based on improved YOLOv5 algorithm

计算机科学 特征(语言学) 算法 人工智能 模糊逻辑 盈利能力指数 数据挖掘 模式识别(心理学) 财务 语言学 哲学 经济
作者
You Keshun,Huizhong Liu
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (1): 016001-016001 被引量:30
标识
DOI:10.1088/1402-4896/ad0f7d
摘要

Abstract In actual processing plants, the quality and efficiency of the traditional spiral slope flow concentrator still rely on workers to observe the changes in the mineral belt. However, in realistic complex working conditions, the formation of mineral separation zones is subject to large uncertainties, and coupled with the limited efforts, experience, and responsibility of workers, it becomes important to free up labour and improve the efficiency and profitability of the beneficiation plant. Therefore, to solve the problem of difficult detection of fuzzy small target mineral separation point features in real scenes, an improved YOLOv5-based algorithm is proposed. Firstly, the dataset quality is well improved by image enhancement and pre-processing techniques, after that an innovative CASM attention mechanism is added to the backbone of the YOLOv5 model, followed by a multi-scale feature output and prediction enhancement in the neck part of the model, and an optimized loss function is designed to optimize the whole feature learning process. The improved effect of the model and the specific detection performance were tested using real mine belt image datasets, the ablation experiment verified the comprehensive effectiveness of the proposed improved method and finally compared it with the existing high-level attention mechanism and target detection algorithms. The experimental results show that the improved YOLOv5 algorithm proposed in this study has the best overall detection performance carrying a MAP of 0.954, which is over 20% better than YOLOv5. It is worth mentioning that the improvement to achieve this performance only increases the parameter values by 0.8M and GFLOPs by 1.8, moreover, in terms of the inference speed, it also achieves a respectable 63 FPS, implying that the proposed improved method achieves a better balance between the performance enhancement and the computational complexity of the model, the overall detection results fully satisfy the industrial requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冉沙发布了新的文献求助10
1秒前
星辰大海应助薛枏采纳,获得10
1秒前
张欣欣发布了新的文献求助10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
xiaomifeng应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得30
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
uu完成签到,获得积分10
2秒前
动听夜雪完成签到 ,获得积分10
3秒前
WH完成签到,获得积分10
5秒前
盒子盒子完成签到,获得积分10
5秒前
6秒前
麦客发布了新的文献求助10
6秒前
huhu完成签到,获得积分20
7秒前
88发布了新的文献求助10
8秒前
8秒前
英勇的绿海完成签到,获得积分10
8秒前
9秒前
共享精神应助zhang采纳,获得10
10秒前
Dolbar发布了新的文献求助10
10秒前
10秒前
斯文败类应助ABC的小李采纳,获得10
10秒前
暮晓见完成签到 ,获得积分10
11秒前
asdasdasd发布了新的文献求助10
12秒前
淡定不平完成签到,获得积分20
12秒前
12秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Atlas of the Rabbit Brain and Spinal Cord 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017858
求助须知:如何正确求助?哪些是违规求助? 4257295
关于积分的说明 13268417
捐赠科研通 4061722
什么是DOI,文献DOI怎么找? 2221543
邀请新用户注册赠送积分活动 1230736
关于科研通互助平台的介绍 1153382