In Situ Growth of an Ultrathin Polymer Brush Layer Enables a Reversible Zinc Anode

阳极 法拉第效率 材料科学 电解质 水溶液 化学工程 电偶阳极 电化学 阴极 电极 纳米技术 化学 有机化学 冶金 阴极保护 物理化学 工程类
作者
Shuangshuang Hao,Xinren Zhang,Yongwei Pei,Hao Xiong,Qian Ye,Fei Xu,Feng Zhou
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:11 (48): 17006-17014 被引量:8
标识
DOI:10.1021/acssuschemeng.3c04861
摘要

Aqueous zinc-ion-based devices exhibit an attractive prospect in large-scale energy storage due to their safe, environmentally friendly, and low-cost characteristics. Nevertheless, the Zn metal anode suffers critically from severe parasitic reactions and Zn dendrites, mainly as a result of the lack of stable interphase layers. Herein, we propose the in situ grafting of an ultrathin molecular brush (≈10 nm thickness) as an artificial solid electrolyte interphase (SEI) for a highly reversible dendrite-free Zn anode by a surface-grafting strategy. The dense sulfonate functional groups of the poly[[2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)] (PSBMA) SEI layer simultaneously inhibit the penetration of SO42–, avoiding the occurrence of side reactions. Meanwhile, the PSBMA layer allows a uniform Zn-ion concentration field and fast Zn2+ migration kinetics, leading to a dendrite-free Zn anode. Therefore, the half cell using the PSBMA-modified Zn anode achieves a high average Coulombic efficiency of 99.80% over 1000 cycles at 5 mA cm–2. In symmetrical cells, the PSBMA-modified Zn anode exhibits an ultralong lifespan of over 3300 h, far exceeding that of the bare Zn anode (120 h). As proof-of-concept demonstration, the full cells with MnO2 and activated carbon cathodes deliver a superior capacity retention ratio. Our findings show that the construction of in situ SEI layers has promising applications in high-performance aqueous battery technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨欢完成签到,获得积分10
1秒前
1秒前
搜集达人应助wanci采纳,获得10
2秒前
淡淡夕阳完成签到,获得积分10
2秒前
小八统治世界完成签到,获得积分10
2秒前
2秒前
2秒前
99663232完成签到,获得积分10
2秒前
3秒前
失眠忆曼完成签到,获得积分10
3秒前
3秒前
娃娃菜完成签到,获得积分10
3秒前
Ava应助斗转星移采纳,获得10
4秒前
4秒前
云解完成签到,获得积分10
5秒前
zerk完成签到,获得积分10
5秒前
ww完成签到,获得积分10
5秒前
多情以山发布了新的文献求助10
5秒前
lswhyr发布了新的文献求助20
5秒前
布吉布发布了新的文献求助10
6秒前
6秒前
岁城发布了新的文献求助10
7秒前
7秒前
领导范儿应助LEE采纳,获得10
7秒前
wy完成签到,获得积分10
8秒前
苏休夫发布了新的文献求助10
8秒前
李火火火完成签到,获得积分10
8秒前
8秒前
9秒前
YCQ发布了新的文献求助10
10秒前
内容涉嫌违规完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
浅水鱼完成签到,获得积分10
12秒前
yexyz完成签到,获得积分10
12秒前
非洲三巨头完成签到,获得积分10
12秒前
大模型应助zuo采纳,获得10
12秒前
大模型应助缺口口采纳,获得10
12秒前
大福发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503