Temporal transaction information-aware Ponzi scheme detection for ethereum smart contracts

计算机科学 数字加密货币 数据库事务 智能合约 方案(数学) 计算机安全 大数据 特征(语言学) 人工智能 机器学习 数据挖掘 数据库 数学 语言学 数学分析 哲学
作者
Lei Wang,Hao Cheng,Zibin Zheng,Aijun Yang,Ming Xu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107022-107022 被引量:6
标识
DOI:10.1016/j.engappai.2023.107022
摘要

In recent years, the frenetic advances of blockchain techniques have promoted the large-scale application of cryptocurrency and attracted significant attention in the mushrooming applications of decentralized finance (DeFi). To guarantee the health of a DeFi ecosystem, it is critical to reduce the transaction risks in a DeFi system. In particular, as a representative DeFi ecosystem platform, Ethereum's transaction process is mainly carried out with the help of smart contracts. Due to (pseudo)anonymity, the transaction process of Ethereum users is challenged by severe fraud threats. Ponzi scheme is the typical one. Previous studies have used machine learning methods to build Ponzi scheme detection models based on learning from the identified static smart contract samples feature data. However, in the early stage of smart contract deployment, the Ponzi scheme is difficult to detect. With the progress of transactions, Ponzi scheme will gradually show its characteristics. The existing methods are still falling short in capturing the temporal features of smart contracts for detecting Ponzi schemes in the big data environment. The recognition rate of the current approaches needs to be further improved. In this paper, we propose TTPS, a Long Short-Term Memory (LSTM) Ponzi scheme detection method considering time series transaction information of smart contracts. TTPS considers both temporal account features and code features of smart contracts. Adaptive synthetic sampling (ADASYN) is employed to effectively extend the feature data of minority class Ponzi scheme small samples. LSTM is utilized to learn from the temporal feature data of Ponzi scheme samples for TTPS model training. Experimental results verify and demonstrate the effectiveness and efficiency of TTPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
群山完成签到 ,获得积分10
刚刚
1秒前
tramp应助zhong采纳,获得10
1秒前
YAO发布了新的文献求助10
1秒前
白羽佳发布了新的文献求助10
3秒前
ChrisKim完成签到,获得积分10
3秒前
莫莫莫发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
北城发布了新的文献求助20
6秒前
所所应助是小袁呀采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
华仔应助哈尔采纳,获得10
7秒前
无情的匪发布了新的文献求助10
8秒前
CipherSage应助2534165采纳,获得10
8秒前
8秒前
吴五五完成签到,获得积分10
9秒前
luo发布了新的文献求助10
10秒前
韶华若锦完成签到 ,获得积分20
10秒前
11秒前
浮生发布了新的文献求助10
12秒前
Susam发布了新的文献求助10
12秒前
13秒前
今后应助Anoxia采纳,获得10
14秒前
YAO关闭了YAO文献求助
14秒前
15秒前
17秒前
榛蘑大王完成签到,获得积分10
18秒前
金金发布了新的文献求助10
18秒前
星辰大海应助高挑的牛青采纳,获得10
18秒前
汉堡包应助烂漫的断秋采纳,获得10
18秒前
随机完成签到,获得积分10
20秒前
20秒前
20秒前
顺心的舞蹈完成签到,获得积分10
21秒前
Hanxi发布了新的文献求助30
21秒前
22秒前
顾矜应助阿旭采纳,获得10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979788
求助须知:如何正确求助?哪些是违规求助? 3523806
关于积分的说明 11218898
捐赠科研通 3261339
什么是DOI,文献DOI怎么找? 1800544
邀请新用户注册赠送积分活动 879177
科研通“疑难数据库(出版商)”最低求助积分说明 807182