Temporal transaction information-aware Ponzi scheme detection for ethereum smart contracts

计算机科学 数字加密货币 数据库事务 智能合约 方案(数学) 计算机安全 大数据 特征(语言学) 人工智能 机器学习 数据挖掘 数据库 数学 语言学 数学分析 哲学
作者
Lei Wang,Hao Cheng,Zibin Zheng,Aijun Yang,Ming Xu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107022-107022 被引量:6
标识
DOI:10.1016/j.engappai.2023.107022
摘要

In recent years, the frenetic advances of blockchain techniques have promoted the large-scale application of cryptocurrency and attracted significant attention in the mushrooming applications of decentralized finance (DeFi). To guarantee the health of a DeFi ecosystem, it is critical to reduce the transaction risks in a DeFi system. In particular, as a representative DeFi ecosystem platform, Ethereum's transaction process is mainly carried out with the help of smart contracts. Due to (pseudo)anonymity, the transaction process of Ethereum users is challenged by severe fraud threats. Ponzi scheme is the typical one. Previous studies have used machine learning methods to build Ponzi scheme detection models based on learning from the identified static smart contract samples feature data. However, in the early stage of smart contract deployment, the Ponzi scheme is difficult to detect. With the progress of transactions, Ponzi scheme will gradually show its characteristics. The existing methods are still falling short in capturing the temporal features of smart contracts for detecting Ponzi schemes in the big data environment. The recognition rate of the current approaches needs to be further improved. In this paper, we propose TTPS, a Long Short-Term Memory (LSTM) Ponzi scheme detection method considering time series transaction information of smart contracts. TTPS considers both temporal account features and code features of smart contracts. Adaptive synthetic sampling (ADASYN) is employed to effectively extend the feature data of minority class Ponzi scheme small samples. LSTM is utilized to learn from the temporal feature data of Ponzi scheme samples for TTPS model training. Experimental results verify and demonstrate the effectiveness and efficiency of TTPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助北海采纳,获得10
1秒前
1秒前
奋斗水香发布了新的文献求助10
1秒前
淡淡智宸发布了新的文献求助10
1秒前
田様应助脉动采纳,获得10
1秒前
3秒前
vinity完成签到,获得积分10
3秒前
4秒前
dhjic完成签到 ,获得积分10
5秒前
在水一方应助汝桢采纳,获得10
5秒前
6秒前
6秒前
ldz完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
8秒前
9秒前
落后的惜梦完成签到,获得积分10
9秒前
10秒前
小蘑菇应助hyw采纳,获得10
10秒前
gggggggbao发布了新的文献求助10
10秒前
燕麦大王发布了新的文献求助10
10秒前
11秒前
无花果应助hehe采纳,获得30
11秒前
ldz发布了新的文献求助10
12秒前
阿花阿花发布了新的文献求助10
12秒前
汝桢完成签到,获得积分10
13秒前
马开峰发布了新的文献求助10
13秒前
13秒前
14秒前
胡雨轩发布了新的文献求助10
14秒前
月亮发布了新的文献求助10
14秒前
leyi完成签到,获得积分20
14秒前
14秒前
14秒前
852应助白河采纳,获得30
15秒前
怡然诗霜完成签到,获得积分10
15秒前
汝桢发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968781
求助须知:如何正确求助?哪些是违规求助? 4225990
关于积分的说明 13161443
捐赠科研通 4013136
什么是DOI,文献DOI怎么找? 2195894
邀请新用户注册赠送积分活动 1209316
关于科研通互助平台的介绍 1123362