已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RF-Vital: Radio-Based Contactless Respiration Monitoring for a Moving Individual

无线电频率 计算机科学 人工智能 模态(人机交互) 计算机视觉 叠加原理 实时计算 电信 数学 数学分析
作者
Jae-Ho Choi,Ki-Bong Kang,Kyung‐Tae Kim
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 13137-13151 被引量:2
标识
DOI:10.1109/jiot.2023.3329427
摘要

The noncontact respiration rate measurement (nRRM) method allows a system to monitor the breathing patterns of an individual without physical contact, which is crucial for regular health monitoring. Current nRRM approaches primarily depend on detecting minor variations in RGB profiles reflected from a camera to remotely extract respiration signals. However, these methods require continuous pixel-level tracking, which restricts their use on individuals in quasi-stationary sitting positions. To address this limitation, we propose a radiofrequency (RF)-Vital model, which leverages RF signals to extend the applicability of nRRM methods to individuals who exhibit global motions (GMs) and even walk around. The core idea of the RF-Vital model lies in the unique characteristics of RF signals: the RF signals received from a moving individual capture both their respiratory motions (RMs) and GMs through linear superposition while simultaneously providing the reflections of GM alone. To fully utilize such unique properties, we introduce a new RF modality that allows stable inclusion of micro-level respiration signatures, even when GMs are present. Additionally, we optimize the RF-Vital model using a novel multitask adversarial learning framework combined with a new loss function, which facilitates the direct mapping of the desired RMs as well as the self-supervised removal of GMs, thereby effectively filtering out RMs from mixtures of GMs and RMs. The proposed RFvital model was evaluated using newly published data sets. It demonstrated state-of-the-art performance in static conditions and achieved the significant milestone of enabling nRRM under moving conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
Zone完成签到 ,获得积分10
4秒前
qingjun发布了新的文献求助10
5秒前
嘟嘟雯完成签到 ,获得积分10
5秒前
整齐的未来完成签到 ,获得积分10
6秒前
激情的健柏完成签到 ,获得积分10
6秒前
8秒前
nono完成签到 ,获得积分10
8秒前
9秒前
cc77完成签到,获得积分20
11秒前
12秒前
深海学龙发布了新的文献求助10
14秒前
16秒前
18秒前
花痴的易真完成签到,获得积分10
18秒前
linjt完成签到 ,获得积分10
19秒前
斯文的凝珍完成签到,获得积分10
20秒前
kobiy完成签到 ,获得积分10
21秒前
22秒前
科研通AI2S应助yqt采纳,获得10
22秒前
23秒前
谨慎的向南完成签到,获得积分10
23秒前
26秒前
深海学龙完成签到,获得积分10
26秒前
27秒前
圈哥完成签到 ,获得积分10
28秒前
29秒前
29秒前
30秒前
31秒前
大大小完成签到,获得积分10
32秒前
33秒前
思源应助二舅司机采纳,获得10
33秒前
短发大叔发布了新的文献求助10
34秒前
123完成签到 ,获得积分10
36秒前
jane123发布了新的文献求助10
37秒前
jh完成签到 ,获得积分10
41秒前
默默发布了新的文献求助10
41秒前
年轻千愁完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426229
求助须知:如何正确求助?哪些是违规求助? 4540019
关于积分的说明 14171354
捐赠科研通 4457809
什么是DOI,文献DOI怎么找? 2444671
邀请新用户注册赠送积分活动 1435613
关于科研通互助平台的介绍 1413151