Distributionally Robust Federated Learning for Network Traffic Classification With Noisy Labels

计算机科学 分类器(UML) 噪声数据 稳健性(进化) 交通分类 人工智能 数据挖掘 训练集 机器学习 模式识别(心理学) 计算机网络 服务质量 生物化学 基因 化学
作者
Siping Shi,Yingya Guo,Dan Wang,Yifei Zhu,Zhu Han
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:23 (5): 6212-6226
标识
DOI:10.1109/tmc.2023.3319657
摘要

Network traffic classifiers of mobile devices are widely learned with federated learning(FL) for privacy preservation. Noisy labels commonly occur in each device and deteriorate the accuracy of the learned network traffic classifier. Existing noise elimination approaches attempt to solve this by detecting and removing noisy labeled data before training. However, they may lead to poor performance of the learned classifier, as the remaining traffic data in each device is few after noise removal. Motivated by the observation that the data feature of the noisy labeled traffic data is clean and the underlying true distribution of the noisy labeled data is statistically close to the clean traffic data, we propose to utilize the noisy labeled data by normalizing it to be close to the clean traffic data distribution. Specifically, we first formulate a distributionally robust federated network traffic classifier learning problem (DR-NTC) to jointly take the normalized traffic data and clean data into training. Then we specify the normalization function under Wasserstein distance to transform the noisy labeled traffic data into a certified robust region around the clean data distribution, and we reformulate the DR-NTC problem into an equivalent DR-NTC-W problem. Finally, we design a robust federated network traffic classifier learning algorithm, RFNTC, to solve the DR-NTC-W problem. Theoretical analysis shows the robustness guarantee of RFNTC. We evaluate the algorithm by training classifiers on a real-world dataset. Our experimental results show that RFNTC significantly improves the accuracy of the learned classifier by up to 1.05 times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩丸子完成签到,获得积分10
刚刚
狗窝里的猫yan完成签到,获得积分10
刚刚
1秒前
没有蛀牙完成签到,获得积分10
2秒前
2秒前
酶没美镁完成签到,获得积分10
3秒前
3秒前
Lwxbb完成签到,获得积分10
4秒前
科目三应助搬砖人采纳,获得200
4秒前
安然发布了新的文献求助10
4秒前
SweetyANN完成签到,获得积分10
5秒前
5秒前
勤劳溪灵完成签到,获得积分10
5秒前
5秒前
夏姬宁静发布了新的文献求助10
6秒前
情怀应助无所吊谓采纳,获得10
6秒前
Active完成签到,获得积分10
6秒前
scholars完成签到,获得积分10
7秒前
ohno耶耶耶发布了新的文献求助10
8秒前
SweetyANN发布了新的文献求助10
8秒前
8秒前
niceweiwei发布了新的文献求助10
9秒前
ZG发布了新的文献求助10
9秒前
9秒前
迷路安雁完成签到,获得积分10
10秒前
10秒前
yuery完成签到,获得积分10
10秒前
牛牛牛完成签到,获得积分10
10秒前
A1len完成签到,获得积分10
11秒前
爱写论文的小胡完成签到,获得积分10
11秒前
拉长的问晴完成签到,获得积分10
12秒前
Yukikig完成签到,获得积分10
12秒前
哈哈哈哈哈完成签到,获得积分10
12秒前
tofms完成签到,获得积分10
12秒前
没有蛀牙发布了新的文献求助10
12秒前
Starain完成签到,获得积分10
12秒前
WW完成签到,获得积分10
13秒前
13秒前
13秒前
zhengke924完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874