Distributionally Robust Federated Learning for Network Traffic Classification With Noisy Labels

计算机科学 分类器(UML) 噪声数据 稳健性(进化) 交通分类 人工智能 数据挖掘 训练集 机器学习 模式识别(心理学) 计算机网络 服务质量 生物化学 基因 化学
作者
Siping Shi,Yingya Guo,Dan Wang,Yifei Zhu,Zhu Han
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:23 (5): 6212-6226
标识
DOI:10.1109/tmc.2023.3319657
摘要

Network traffic classifiers of mobile devices are widely learned with federated learning(FL) for privacy preservation. Noisy labels commonly occur in each device and deteriorate the accuracy of the learned network traffic classifier. Existing noise elimination approaches attempt to solve this by detecting and removing noisy labeled data before training. However, they may lead to poor performance of the learned classifier, as the remaining traffic data in each device is few after noise removal. Motivated by the observation that the data feature of the noisy labeled traffic data is clean and the underlying true distribution of the noisy labeled data is statistically close to the clean traffic data, we propose to utilize the noisy labeled data by normalizing it to be close to the clean traffic data distribution. Specifically, we first formulate a distributionally robust federated network traffic classifier learning problem (DR-NTC) to jointly take the normalized traffic data and clean data into training. Then we specify the normalization function under Wasserstein distance to transform the noisy labeled traffic data into a certified robust region around the clean data distribution, and we reformulate the DR-NTC problem into an equivalent DR-NTC-W problem. Finally, we design a robust federated network traffic classifier learning algorithm, RFNTC, to solve the DR-NTC-W problem. Theoretical analysis shows the robustness guarantee of RFNTC. We evaluate the algorithm by training classifiers on a real-world dataset. Our experimental results show that RFNTC significantly improves the accuracy of the learned classifier by up to 1.05 times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
浮游应助qq采纳,获得10
1秒前
June发布了新的文献求助10
1秒前
yuyu完成签到,获得积分10
1秒前
2秒前
豆花完成签到,获得积分10
3秒前
3秒前
传奇3应助jakloc采纳,获得10
3秒前
浮游应助喻世界采纳,获得10
3秒前
小炊发布了新的文献求助10
4秒前
小蘑菇应助赵丽红采纳,获得10
5秒前
ding应助赵丽红采纳,获得10
5秒前
在水一方应助赵丽红采纳,获得10
5秒前
慕青应助JINGJING采纳,获得20
6秒前
6秒前
考研大拿完成签到,获得积分10
6秒前
热心的银耳汤完成签到 ,获得积分10
6秒前
范户晓发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
浮游应助sisi采纳,获得10
9秒前
科研通AI5应助契心采纳,获得10
9秒前
black456发布了新的文献求助10
9秒前
深情安青应助A你采纳,获得10
9秒前
10秒前
谭代涛发布了新的文献求助10
10秒前
11秒前
萱瑄爸爸发布了新的文献求助10
11秒前
11秒前
12秒前
充电宝应助踏实煎饼采纳,获得10
12秒前
尊敬毛豆发布了新的文献求助10
12秒前
12秒前
polarbear发布了新的文献求助10
12秒前
evergarden发布了新的文献求助30
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016248
求助须知:如何正确求助?哪些是违规求助? 4256302
关于积分的说明 13264360
捐赠科研通 4060256
什么是DOI,文献DOI怎么找? 2220809
邀请新用户注册赠送积分活动 1230053
关于科研通互助平台的介绍 1152671