Distributionally Robust Federated Learning for Network Traffic Classification With Noisy Labels

计算机科学 分类器(UML) 噪声数据 稳健性(进化) 交通分类 人工智能 数据挖掘 训练集 机器学习 模式识别(心理学) 计算机网络 服务质量 生物化学 基因 化学
作者
Siping Shi,Yingya Guo,Dan Wang,Yifei Zhu,Zhu Han
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:23 (5): 6212-6226
标识
DOI:10.1109/tmc.2023.3319657
摘要

Network traffic classifiers of mobile devices are widely learned with federated learning(FL) for privacy preservation. Noisy labels commonly occur in each device and deteriorate the accuracy of the learned network traffic classifier. Existing noise elimination approaches attempt to solve this by detecting and removing noisy labeled data before training. However, they may lead to poor performance of the learned classifier, as the remaining traffic data in each device is few after noise removal. Motivated by the observation that the data feature of the noisy labeled traffic data is clean and the underlying true distribution of the noisy labeled data is statistically close to the clean traffic data, we propose to utilize the noisy labeled data by normalizing it to be close to the clean traffic data distribution. Specifically, we first formulate a distributionally robust federated network traffic classifier learning problem (DR-NTC) to jointly take the normalized traffic data and clean data into training. Then we specify the normalization function under Wasserstein distance to transform the noisy labeled traffic data into a certified robust region around the clean data distribution, and we reformulate the DR-NTC problem into an equivalent DR-NTC-W problem. Finally, we design a robust federated network traffic classifier learning algorithm, RFNTC, to solve the DR-NTC-W problem. Theoretical analysis shows the robustness guarantee of RFNTC. We evaluate the algorithm by training classifiers on a real-world dataset. Our experimental results show that RFNTC significantly improves the accuracy of the learned classifier by up to 1.05 times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
读者发布了新的文献求助30
刚刚
NexusExplorer应助989933采纳,获得10
1秒前
1秒前
虚幻访冬应助痴情的博超采纳,获得50
1秒前
惊蛰发布了新的文献求助10
1秒前
youlmyou完成签到,获得积分10
2秒前
现代雁桃发布了新的文献求助10
2秒前
光电彭于晏完成签到,获得积分10
3秒前
浮游应助FEATHER采纳,获得10
3秒前
腾腾发布了新的文献求助10
4秒前
成就棒棒糖完成签到,获得积分10
4秒前
5秒前
5秒前
miaojiaxin发布了新的文献求助10
5秒前
6秒前
shan完成签到,获得积分10
6秒前
6秒前
浮游应助Steven采纳,获得10
7秒前
wujingshuai完成签到,获得积分10
7秒前
8秒前
王路飞发布了新的文献求助10
8秒前
wxyshare举报lhy求助涉嫌违规
8秒前
瓜姐发布了新的文献求助10
8秒前
小树苗发布了新的文献求助10
9秒前
Jasper应助南乔采纳,获得10
10秒前
teriteri完成签到,获得积分10
10秒前
虾青素应助梅夕阳采纳,获得10
11秒前
派大星发布了新的文献求助10
11秒前
12秒前
wwwww发布了新的文献求助10
12秒前
13秒前
活泼一斩完成签到,获得积分10
16秒前
ndPAXB_able完成签到,获得积分10
16秒前
甜蜜的傲蕾完成签到,获得积分10
16秒前
16秒前
敏感的幻波完成签到 ,获得积分10
17秒前
叶公子发布了新的文献求助10
17秒前
17秒前
989933完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5182896
求助须知:如何正确求助?哪些是违规求助? 4369372
关于积分的说明 13605892
捐赠科研通 4220988
什么是DOI,文献DOI怎么找? 2315005
邀请新用户注册赠送积分活动 1313780
关于科研通互助平台的介绍 1262473