Autonomous optimization of cutting conditions in end milling operation based on deep reinforcement learning (Offline training in simulation environment for feed rate optimization)

强化学习 计算机科学 自动化 加速度 人工神经网络 控制工程 工程类 人工智能 机械工程 经典力学 物理
作者
Kazuki Kaneko,Toshihiro KOMATSU,Libo ZHOU,Teppei Onuki,Hirotaka Ojima,Jun Shimizu
出处
期刊:Journal of Advanced Mechanical Design Systems and Manufacturing [The Japan Society of Mechanical Engineers]
卷期号:17 (5): JAMDSM0064-JAMDSM0064
标识
DOI:10.1299/jamdsm.2023jamdsm0064
摘要

Full automation of manufacturing is strongly desired to improve the productivity. Autonomous optimization of the cutting conditions in the end milling operation is one of the challenges in achieving this goal. This paper proposes a system for optimization of the cutting conditions based on Deep Q-Network (DQN), which is a kind of deep reinforcement learning. An end mill is used as an agent and the end milling simulation is employed to provide the environment in the proposed system. Geometric information of interference state between tool and workpiece in the simulation is considered as the state of the environment and acceleration of feed rate is the action for the agent to take. The action is optimized by DQN to maximize the accumulated reward given from the environment, which evaluates how good the scenario of action is. Therefore, the cutting conditions can be optimized according to the defined reward function. We performed three case studies to verify our proposed method, in which the cutting torque is controlled to be a specified value. The objective was successfully achieved regardless of differences in the end milling scenario. The obtained results strongly suggested a fact that the reinforcement learning is a promising solution to autonomous optimization of the cutting conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
辞却发布了新的文献求助10
1秒前
体贴的嵩发布了新的文献求助10
2秒前
Derik完成签到,获得积分10
2秒前
Jouleken完成签到,获得积分10
2秒前
roger发布了新的文献求助10
3秒前
ZX801完成签到 ,获得积分10
3秒前
4秒前
溪听完成签到,获得积分10
5秒前
阿和完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助cjy123采纳,获得10
6秒前
华子的五A替身完成签到,获得积分10
6秒前
科研通AI2S应助丁论文采纳,获得10
6秒前
Mike完成签到,获得积分10
7秒前
Lucas应助wwm采纳,获得10
7秒前
可爱的函函应助tbb采纳,获得10
7秒前
GOUGOU2022完成签到,获得积分20
7秒前
论文急急令完成签到,获得积分10
8秒前
积极的硬币完成签到,获得积分10
8秒前
化合物来完成签到,获得积分20
10秒前
byy发布了新的文献求助10
11秒前
xiaoyi完成签到 ,获得积分10
11秒前
SciGPT应助PP采纳,获得10
11秒前
11秒前
自信号厂完成签到 ,获得积分10
12秒前
12秒前
淳于冬卉发布了新的文献求助10
12秒前
13秒前
14秒前
隐形曼青应助Sword采纳,获得10
14秒前
tbb完成签到,获得积分10
15秒前
科研通AI2S应助体贴的嵩采纳,获得10
15秒前
学习使我快乐完成签到,获得积分10
16秒前
16秒前
16秒前
潇洒的辣条完成签到,获得积分10
17秒前
小肥关注了科研通微信公众号
17秒前
wisteety发布了新的文献求助10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311803
求助须知:如何正确求助?哪些是违规求助? 2944667
关于积分的说明 8520265
捐赠科研通 2620195
什么是DOI,文献DOI怎么找? 1432715
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650039