清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Autonomous optimization of cutting conditions in end milling operation based on deep reinforcement learning (Offline training in simulation environment for feed rate optimization)

强化学习 计算机科学 自动化 加速度 人工神经网络 控制工程 工程类 人工智能 机械工程 物理 经典力学
作者
Kazuki Kaneko,Toshihiro KOMATSU,Libo ZHOU,Teppei Onuki,Hirotaka Ojima,Jun Shimizu
出处
期刊:Journal of Advanced Mechanical Design Systems and Manufacturing [The Japan Society of Mechanical Engineers]
卷期号:17 (5): JAMDSM0064-JAMDSM0064
标识
DOI:10.1299/jamdsm.2023jamdsm0064
摘要

Full automation of manufacturing is strongly desired to improve the productivity. Autonomous optimization of the cutting conditions in the end milling operation is one of the challenges in achieving this goal. This paper proposes a system for optimization of the cutting conditions based on Deep Q-Network (DQN), which is a kind of deep reinforcement learning. An end mill is used as an agent and the end milling simulation is employed to provide the environment in the proposed system. Geometric information of interference state between tool and workpiece in the simulation is considered as the state of the environment and acceleration of feed rate is the action for the agent to take. The action is optimized by DQN to maximize the accumulated reward given from the environment, which evaluates how good the scenario of action is. Therefore, the cutting conditions can be optimized according to the defined reward function. We performed three case studies to verify our proposed method, in which the cutting torque is controlled to be a specified value. The objective was successfully achieved regardless of differences in the end milling scenario. The obtained results strongly suggested a fact that the reinforcement learning is a promising solution to autonomous optimization of the cutting conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
Ava应助ZHY采纳,获得10
10秒前
研友_alan完成签到 ,获得积分10
18秒前
紫焰完成签到 ,获得积分10
41秒前
无悔完成签到 ,获得积分10
47秒前
1分钟前
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
1分钟前
年轻绮波完成签到,获得积分10
1分钟前
时老完成签到 ,获得积分10
2分钟前
闲人颦儿完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
笔墨纸砚完成签到 ,获得积分10
3分钟前
阿洁完成签到,获得积分10
3分钟前
阿洁发布了新的文献求助10
3分钟前
复杂白凡应助阿洁采纳,获得10
4分钟前
菠萝包完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI6应助Maomaojiangjiang采纳,获得10
4分钟前
4分钟前
KINGAZX完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
打打应助科研通管家采纳,获得10
5分钟前
5分钟前
充电宝应助哭泣的芷蝶采纳,获得10
5分钟前
江南之南完成签到 ,获得积分10
5分钟前
5分钟前
chichenglin完成签到 ,获得积分0
6分钟前
6分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
斯文听寒完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529358
求助须知:如何正确求助?哪些是违规求助? 4618481
关于积分的说明 14562694
捐赠科研通 4557545
什么是DOI,文献DOI怎么找? 2497604
邀请新用户注册赠送积分活动 1477776
关于科研通互助平台的介绍 1449269