钴
酞菁
光催化
光化学
共价键
材料科学
选择性
吸收(声学)
无机化学
化学
催化作用
纳米技术
有机化学
复合材料
作者
Qiqi Zhang,Meiyan Chen,Yanjie Zhang,Yuansong Ye,Diwen Liu,Chao Xu,Zuju Ma,Benyong Lou,Rusheng Yuan,Rongjian Sa
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2023-01-01
卷期号:15 (39): 16030-16038
被引量:4
摘要
Using solar photocatalytic CO2 reduction to produce high-value-added products is a promising solution to environmental problems caused by greenhouse gases. Metal phthalocyanine COFs possess a suitable band structure and strong light absorption ability, making them a promising candidate for photocatalytic CO2 reduction. However, the relationship between the electronic structure of these materials and photocatalytic properties, as well as the mechanism of photocatalytic CO2 reduction, is still unclear. Herein, the electronic structure of three MPc-TFPN-COFs (M = Ni, Co, Fe) and the reaction process of CO2 reduction to CO, HCOOH, HCHO and CH3OH were studied using DFT calculations. The calculated results demonstrate that these COFs have a good photo response to visible light and are new potential photocatalytic materials. Three COFs show different reaction mechanisms and selectivity in generating CO2 reduction products. NiPc-TFPN-COFs obtain CO through the reaction pathway of CO2 → COOH → CO, and the energy barrier of the rate-determining step is 2.82 eV. NiPc-TFPN-COFs and FePc-TFPN-COFs generate HCHO through CO2 → COOH → CO → CHO → HCHO, and the energy barrier of the rate step is 2.82 eV and 2.37 eV, respectively. Higher energies are required to produce HCOOH and CH3OH. This work is helping in understanding the mechanism of photocatalytic reduction of CO2 in metallophthalocyanine COFs.
科研通智能强力驱动
Strongly Powered by AbleSci AI