已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ITF-WPI: Image and text based cross-modal feature fusion model for wolfberry pest recognition

卷积神经网络 计算机科学 人工智能 特征提取 模式识别(心理学) 特征(语言学) 情态动词 鉴定(生物学) 哲学 语言学 化学 植物 高分子化学 生物
作者
Guowei Dai,Jingchao Fan,Christine Dewi
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:212: 108129-108129 被引量:14
标识
DOI:10.1016/j.compag.2023.108129
摘要

As one of the necessary cash crops in China and many other countries, wolfberry is parasitized by multiple pests, and its yield is highly susceptible to being affected. On the other hand, agricultural pest backgrounds are complex. When identifying them, single-modal models cannot utilize diverse data types across modalities, resulting in low identification accuracy and data utilization. Traditional unimodal identification models can no longer meet the needs of multimodal data development in agriculture. To overcome these challenges, the ITF-WPI cross-modal feature fusion model is proposed, which consists of CoTN and ODLS for parallel processing of images and text, respectively. We incorporate the Transformer structure (CoT), which focuses on contextual feature extraction, into CoTN to make full use of the rich static and dynamic linear fusion contexts between adjacent keys and improve the 4-stage network of CoTN using Pyramid Squeezed Attention (PSA) to improve the extraction of multi-scale feature structure information and effectively promote the interaction of in-depth features with multi-scale spatial information. The ODLS network constructed by introducing 1D convolutional and bidirectional LSTM stacking has been shown to have more robust text feature acquisition than other advanced convolutional neural network-long short-term memory (CNN-LSTM) models from experimental results, with a 30% reduction in MACCs compared to the optimal model. The results showed that ITF-WPI performed well in accuracy, F1 score, model size, and MACCs with 97.98%, 93.19%, 52.20 MB, and 7.828 G compared to the classical state-of-the-art (SOTA) model, lightweight SOTA model and advanced Transformer neural network synthesis, respectively. The model has critical practical applications for promoting the development of cross-modal models in agriculture and research on wolfberry pest control and improving wolfberry yields. The code and dataset for this study will be posted on GitHub (https://github.com/wemindful/Cross-modal-pest-Identifying) as soon as the study is released, and new data will be updated in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵懂的朋友完成签到,获得积分10
4秒前
张子捷发布了新的文献求助10
5秒前
李昕123完成签到 ,获得积分10
8秒前
13秒前
平常的凡白完成签到 ,获得积分10
14秒前
可爱的函函应助小明采纳,获得30
16秒前
科研Mayormm完成签到 ,获得积分10
17秒前
llkk发布了新的文献求助10
18秒前
21秒前
22秒前
风趣的从梦完成签到,获得积分10
23秒前
__完成签到 ,获得积分20
25秒前
27秒前
练习者发布了新的文献求助10
28秒前
30秒前
杉进完成签到 ,获得积分10
35秒前
Cheny发布了新的文献求助10
35秒前
bukeshuo发布了新的文献求助10
40秒前
42秒前
46秒前
宰宰小熊完成签到 ,获得积分20
48秒前
宇文傲龙完成签到 ,获得积分10
50秒前
懵懂的半蕾完成签到 ,获得积分10
54秒前
54秒前
orixero应助lele7458采纳,获得10
1分钟前
Dara完成签到,获得积分10
1分钟前
1分钟前
小二郎应助RW采纳,获得10
1分钟前
羊羊羊完成签到,获得积分10
1分钟前
勤恳青槐完成签到 ,获得积分10
1分钟前
ISLAND完成签到,获得积分10
1分钟前
糖加三勺完成签到 ,获得积分10
1分钟前
1分钟前
菜菜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162246
求助须知:如何正确求助?哪些是违规求助? 2813263
关于积分的说明 7899489
捐赠科研通 2472504
什么是DOI,文献DOI怎么找? 1316446
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142