ITF-WPI: Image and text based cross-modal feature fusion model for wolfberry pest recognition

卷积神经网络 计算机科学 人工智能 特征提取 模式识别(心理学) 特征(语言学) 情态动词 鉴定(生物学) 哲学 语言学 化学 植物 高分子化学 生物
作者
Guowei Dai,Jingchao Fan,Christine Dewi
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108129-108129 被引量:46
标识
DOI:10.1016/j.compag.2023.108129
摘要

As one of the necessary cash crops in China and many other countries, wolfberry is parasitized by multiple pests, and its yield is highly susceptible to being affected. On the other hand, agricultural pest backgrounds are complex. When identifying them, single-modal models cannot utilize diverse data types across modalities, resulting in low identification accuracy and data utilization. Traditional unimodal identification models can no longer meet the needs of multimodal data development in agriculture. To overcome these challenges, the ITF-WPI cross-modal feature fusion model is proposed, which consists of CoTN and ODLS for parallel processing of images and text, respectively. We incorporate the Transformer structure (CoT), which focuses on contextual feature extraction, into CoTN to make full use of the rich static and dynamic linear fusion contexts between adjacent keys and improve the 4-stage network of CoTN using Pyramid Squeezed Attention (PSA) to improve the extraction of multi-scale feature structure information and effectively promote the interaction of in-depth features with multi-scale spatial information. The ODLS network constructed by introducing 1D convolutional and bidirectional LSTM stacking has been shown to have more robust text feature acquisition than other advanced convolutional neural network-long short-term memory (CNN-LSTM) models from experimental results, with a 30% reduction in MACCs compared to the optimal model. The results showed that ITF-WPI performed well in accuracy, F1 score, model size, and MACCs with 97.98%, 93.19%, 52.20 MB, and 7.828 G compared to the classical state-of-the-art (SOTA) model, lightweight SOTA model and advanced Transformer neural network synthesis, respectively. The model has critical practical applications for promoting the development of cross-modal models in agriculture and research on wolfberry pest control and improving wolfberry yields. The code and dataset for this study will be posted on GitHub (https://github.com/wemindful/Cross-modal-pest-Identifying) as soon as the study is released, and new data will be updated in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石头发布了新的文献求助10
刚刚
qiaozhi乔治完成签到,获得积分20
1秒前
损我空完成签到,获得积分10
1秒前
科研通AI6应助yk采纳,获得10
1秒前
1秒前
百合完成签到,获得积分10
1秒前
绝塵完成签到,获得积分10
1秒前
天上的云在偷偷看你完成签到 ,获得积分10
2秒前
颜子尧关注了科研通微信公众号
3秒前
燕子完成签到,获得积分10
3秒前
慕青应助Lily采纳,获得10
3秒前
暖冬22完成签到,获得积分10
4秒前
无忧发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
脑洞疼应助Thnine采纳,获得10
5秒前
科研通AI5应助开心听露采纳,获得10
5秒前
慕青应助开心听露采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
lin发布了新的文献求助10
6秒前
LHL发布了新的文献求助10
8秒前
8秒前
爱学习的佩奇完成签到,获得积分10
8秒前
励志成为大师完成签到,获得积分10
9秒前
m(_._)m完成签到 ,获得积分0
9秒前
浮游应助zzeru21采纳,获得10
10秒前
10秒前
哈哈完成签到,获得积分10
10秒前
夕沫完成签到,获得积分10
10秒前
SZ发布了新的文献求助30
11秒前
机密塔发布了新的文献求助10
11秒前
vicki完成签到,获得积分10
12秒前
虚拟的泥猴桃完成签到,获得积分10
13秒前
14秒前
15秒前
零食宝发布了新的文献求助10
15秒前
16秒前
科研通AI5应助张慧华采纳,获得10
16秒前
善学以致用应助dddd采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4897467
求助须知:如何正确求助?哪些是违规求助? 4178611
关于积分的说明 12972105
捐赠科研通 3942232
什么是DOI,文献DOI怎么找? 2162570
邀请新用户注册赠送积分活动 1181133
关于科研通互助平台的介绍 1086617