ITF-WPI: Image and text based cross-modal feature fusion model for wolfberry pest recognition

卷积神经网络 计算机科学 人工智能 特征提取 模式识别(心理学) 特征(语言学) 情态动词 鉴定(生物学) 哲学 语言学 化学 植物 高分子化学 生物
作者
Guowei Dai,Jingchao Fan,Christine Dewi
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108129-108129 被引量:46
标识
DOI:10.1016/j.compag.2023.108129
摘要

As one of the necessary cash crops in China and many other countries, wolfberry is parasitized by multiple pests, and its yield is highly susceptible to being affected. On the other hand, agricultural pest backgrounds are complex. When identifying them, single-modal models cannot utilize diverse data types across modalities, resulting in low identification accuracy and data utilization. Traditional unimodal identification models can no longer meet the needs of multimodal data development in agriculture. To overcome these challenges, the ITF-WPI cross-modal feature fusion model is proposed, which consists of CoTN and ODLS for parallel processing of images and text, respectively. We incorporate the Transformer structure (CoT), which focuses on contextual feature extraction, into CoTN to make full use of the rich static and dynamic linear fusion contexts between adjacent keys and improve the 4-stage network of CoTN using Pyramid Squeezed Attention (PSA) to improve the extraction of multi-scale feature structure information and effectively promote the interaction of in-depth features with multi-scale spatial information. The ODLS network constructed by introducing 1D convolutional and bidirectional LSTM stacking has been shown to have more robust text feature acquisition than other advanced convolutional neural network-long short-term memory (CNN-LSTM) models from experimental results, with a 30% reduction in MACCs compared to the optimal model. The results showed that ITF-WPI performed well in accuracy, F1 score, model size, and MACCs with 97.98%, 93.19%, 52.20 MB, and 7.828 G compared to the classical state-of-the-art (SOTA) model, lightweight SOTA model and advanced Transformer neural network synthesis, respectively. The model has critical practical applications for promoting the development of cross-modal models in agriculture and research on wolfberry pest control and improving wolfberry yields. The code and dataset for this study will be posted on GitHub (https://github.com/wemindful/Cross-modal-pest-Identifying) as soon as the study is released, and new data will be updated in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助鱼维尼采纳,获得10
1秒前
赘婿应助妮妮采纳,获得10
1秒前
完美世界应助大宝采纳,获得10
1秒前
gttlyb完成签到,获得积分10
2秒前
中华有为完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
搞怪南烟发布了新的文献求助30
2秒前
仔仔发布了新的文献求助10
2秒前
2秒前
Jasper应助香蕉梨愁采纳,获得10
3秒前
无情干饭崽完成签到,获得积分10
3秒前
慕青应助笨笨采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助20
4秒前
852应助傲慢与偏见zz采纳,获得10
4秒前
学姐完成签到,获得积分10
4秒前
4秒前
5秒前
刘培培发布了新的文献求助10
5秒前
势不可挡发布了新的文献求助10
5秒前
1111应助zfm采纳,获得10
5秒前
5秒前
5秒前
领导范儿应助小皮艇采纳,获得10
6秒前
陌上花开完成签到,获得积分0
6秒前
6秒前
7秒前
yellow发布了新的文献求助10
7秒前
妮妮发布了新的文献求助10
7秒前
SciGPT应助李欣聪采纳,获得10
7秒前
Alily完成签到,获得积分10
7秒前
8秒前
8秒前
可爱的函函应助斌城采纳,获得10
8秒前
8秒前
9秒前
靓丽幻梅发布了新的文献求助10
9秒前
dalin发布了新的文献求助100
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577004
求助须知:如何正确求助?哪些是违规求助? 3996170
关于积分的说明 12371644
捐赠科研通 3670203
什么是DOI,文献DOI怎么找? 2022678
邀请新用户注册赠送积分活动 1056753
科研通“疑难数据库(出版商)”最低求助积分说明 943949