ITF-WPI: Image and text based cross-modal feature fusion model for wolfberry pest recognition

卷积神经网络 计算机科学 人工智能 特征提取 模式识别(心理学) 特征(语言学) 情态动词 鉴定(生物学) 哲学 语言学 化学 植物 高分子化学 生物
作者
Guowei Dai,Jingchao Fan,Christine Dewi
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108129-108129 被引量:33
标识
DOI:10.1016/j.compag.2023.108129
摘要

As one of the necessary cash crops in China and many other countries, wolfberry is parasitized by multiple pests, and its yield is highly susceptible to being affected. On the other hand, agricultural pest backgrounds are complex. When identifying them, single-modal models cannot utilize diverse data types across modalities, resulting in low identification accuracy and data utilization. Traditional unimodal identification models can no longer meet the needs of multimodal data development in agriculture. To overcome these challenges, the ITF-WPI cross-modal feature fusion model is proposed, which consists of CoTN and ODLS for parallel processing of images and text, respectively. We incorporate the Transformer structure (CoT), which focuses on contextual feature extraction, into CoTN to make full use of the rich static and dynamic linear fusion contexts between adjacent keys and improve the 4-stage network of CoTN using Pyramid Squeezed Attention (PSA) to improve the extraction of multi-scale feature structure information and effectively promote the interaction of in-depth features with multi-scale spatial information. The ODLS network constructed by introducing 1D convolutional and bidirectional LSTM stacking has been shown to have more robust text feature acquisition than other advanced convolutional neural network-long short-term memory (CNN-LSTM) models from experimental results, with a 30% reduction in MACCs compared to the optimal model. The results showed that ITF-WPI performed well in accuracy, F1 score, model size, and MACCs with 97.98%, 93.19%, 52.20 MB, and 7.828 G compared to the classical state-of-the-art (SOTA) model, lightweight SOTA model and advanced Transformer neural network synthesis, respectively. The model has critical practical applications for promoting the development of cross-modal models in agriculture and research on wolfberry pest control and improving wolfberry yields. The code and dataset for this study will be posted on GitHub (https://github.com/wemindful/Cross-modal-pest-Identifying) as soon as the study is released, and new data will be updated in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Lucas应助来日方长采纳,获得10
刚刚
chang发布了新的文献求助10
刚刚
小巫发布了新的文献求助10
1秒前
周娅敏发布了新的文献求助10
2秒前
华仔应助答辩采纳,获得10
2秒前
caixiayin发布了新的文献求助10
2秒前
2秒前
威武的冷风关注了科研通微信公众号
3秒前
3秒前
3秒前
3秒前
4秒前
科研通AI2S应助奋斗若风采纳,获得10
4秒前
ly发布了新的文献求助10
4秒前
5秒前
xiang完成签到,获得积分10
5秒前
李爱国应助迷恋采纳,获得10
5秒前
在摆烂的dog完成签到,获得积分10
6秒前
星辰大海应助刘源采纳,获得10
6秒前
小巫完成签到,获得积分10
7秒前
ironsilica完成签到,获得积分10
7秒前
土豪的土豆完成签到 ,获得积分10
7秒前
orixero应助风趣的鸡翅采纳,获得10
8秒前
独步旋碟发布了新的文献求助10
8秒前
prime完成签到,获得积分10
8秒前
李木子完成签到 ,获得积分10
8秒前
8秒前
林登万完成签到,获得积分10
8秒前
hj木秀于林完成签到,获得积分10
8秒前
10秒前
风华正茂发布了新的文献求助10
10秒前
10秒前
SOO应助sx采纳,获得10
11秒前
Superman完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650