Blood supply chain configuration and optimization under the COVID-19 using benders decomposition based heuristic algorithm

启发式 供应链 计算机科学 数学优化 经济短缺 算法 数学 人工智能 语言学 哲学 政府(语言学) 政治学 法学
作者
Omid Abdolazimi,Mir Saman Pishvaee,Mohammad Shafiee,Davood Shishebori,Junfeng Ma,Sarah Entezari
出处
期刊:International Journal of Production Research [Informa]
卷期号:: 1-23 被引量:9
标识
DOI:10.1080/00207543.2023.2263088
摘要

AbstractDuring COVID-19, blood demand exceeded pre-pandemic levels due to reduced donations, causing shortages. Given the severe shortage, it's crucial to optimise blood use, prevent shortages, minimise wastage, and reduce unnecessary transfusions in all hospitalised patients. Designing a reliable blood supply chain network (BSCN) is an effective solution, especially for COVID-19 patients. This strategic decision significantly impacts emergency management performance. An efficient and reliable blood supply chain requires the consideration of multiple factors, including scarceness and perishability of blood, simultaneously. However, existing studies have not addressed all relevant factors in an integrated blood supply chain, and this paper aims to bridge this gap. Furthermore, an efficient Benders Decomposition based heuristic approach is proposed to solve the model. The solution approach has been compared with a set of commonly used meta-heuristic algorithms, including the red deer algorithm (RDA), tree growth algorithm (TGA), and genetic algorithm (GA). The outcomes illustrate that the proposed heuristic approach can solve small and large-size problems in significantly less CPU time than the other proposed solution approaches. For large-size problems, it can reduce the average CPU time by about 80% compared to TGA, about 80% compared to GA, and about 83% compared to RDA. A real case study has been implemented to validate the proposed mathematical model and solution method. The sensitivity analysis has been conducted to validate the significance of the model's parameters; consequently, several managerial insights have been derived.KEYWORDS: Supply chain managementCOVID-19Heuristic/meta-heuristic algorithmsBenders decomposition algorithm Data Availability StatementThe authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationNotes on contributorsOmid AbdolazimiOmid Abdolazimi received his MSc degree in Industrial Engineering from the School of Engineering at Kharazmi University in 2018. His current research interests include logistics and supply chain management and robust optimisation. He has published papers in international journals, including the Journal of Cleaner Production, Neural Computing and Applications, and the like. Now, he is a Ph.D. student at Mississippi State University in the USA. In his Ph.D. study, his research focus is on operations research principles and implementation-related research. He will participate in vessel-drone multi-modal transportation network development and optimisation and truck-drone-related disaster management.Mir Saman PishvaeeMir Saman Pishvaee received his Ph.D. in Industrial Engineering from the University of Tehran and is an Associate Professor at the Iran University of Science and Technology (IUST). He has published over 120 papers in various journals such as Energy, Renewable Energy, Omega, Transportation Research: Part E (TRE), and several book chapters under Springer-Verlag. His research areas are supply chain management, robust optimisation, and system dynamics. Notably, he was among the top 1 percent of researchers (engineering area) from 2017 to 2019 based on the ISI-ESI report.Mohammad ShafieeMohammad Shafiee received his MSc degree in Industrial Engineering at Yazd University in 2021. His research interests include Supply Chain Management, Operations Research, Scheduling, and Data-Driven Optimization. He has published papers in international journals, including the Journal of the Operational Research Society, the International Journal of Production Economics, and Transportation Research: Part E (TRE). Moreover, he is an ad hoc reviewer for several journals, such as the European Journal of Operational Research, the International Journal of Production Economics, and the International Journal of Production Research.Davood ShisheboriDavood Shishebori is presently a professor and the head of the Industrial Engineering department at Yazd University simultaneously. He got his Ph.D. from the Iran University of Science and Technology (IUST). His research interests are Supply Chain Management, Operations Research, and Facility location. So far, he has published decent papers in journals like Transportation Research: Part E (TRE), Journal of Cleaner Production, Neural Computing and Applications, and the like.Junfeng MaJunfeng Ma earned his dual title Ph.D. in Industrial Engineering and Operations Research from Pennsylvania State University in 2016. He is currently associate professor in Department of Industrial and Systems Engineering at Mississippi State University. His research primarily locates on applied operations research and data analytics with applications in complex system design, including sustainable logistic system design, human-technology teaming, and manufacturing system design. His research has been supported by multiple agencies in U.S., such as NSF, DOE, EPA, DOT, DOL, USDA and industries. He has published over 100 peer reviewed journals and conference proceedings, and received multiple best papers awards, such as IISE D&M track best paper, IISE FDP track best paper and two ASME-DFMLC scholar awards. He is the vice chair of Technical Committee of Design for Manufacturing and the Life Cycle (DFMLC) Conference in IDETC/CIE 2024. He is an active member of Institute of Industrial and Systems Engineers (IISE), The American Society of Mechanical Engineers (ASME), INFORMS, and the American Society for Engineering Education (ASEE).Sarah EntezariSarah Entezari received her MSc degree in Industrial Engineering from Industrial Engineering department at Yazd University in 2019. Her research interests include logistics and supply chain management, disaster management, transportation, and robust optimisation. She has submitted papers in international journals, including the Journal of Computers and Industrial Engineering and the Journal of Clean Technologies and Environmental Policy.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助斑ban采纳,获得10
1秒前
沉静完成签到 ,获得积分10
3秒前
Julia完成签到 ,获得积分10
4秒前
含蓄冰蓝完成签到,获得积分10
4秒前
5秒前
5秒前
7秒前
圆彰七大完成签到 ,获得积分10
8秒前
含蓄冰蓝发布了新的文献求助10
9秒前
10秒前
yy完成签到,获得积分10
11秒前
快乐的小胖完成签到,获得积分10
13秒前
yy完成签到,获得积分10
15秒前
混合结构完成签到 ,获得积分10
17秒前
斑ban发布了新的文献求助10
17秒前
深情安青应助yy采纳,获得10
18秒前
20秒前
kid发布了新的文献求助10
25秒前
lizishu举报典雅的灵煌求助涉嫌违规
28秒前
temaxs完成签到 ,获得积分10
31秒前
华仔应助大胆夏兰采纳,获得10
32秒前
完美世界应助kid采纳,获得10
33秒前
凶狠的姚完成签到 ,获得积分10
33秒前
38秒前
42秒前
潇洒斑马完成签到 ,获得积分10
43秒前
rui完成签到 ,获得积分10
55秒前
55秒前
科研通AI2S应助美琦采纳,获得10
57秒前
光亮的睿渊完成签到 ,获得积分10
58秒前
Forever完成签到 ,获得积分10
59秒前
SSY完成签到 ,获得积分10
59秒前
Dr.c发布了新的文献求助10
1分钟前
xiaosi完成签到 ,获得积分10
1分钟前
叮叮当当发布了新的文献求助200
1分钟前
科研通AI6.1应助Chengcheng采纳,获得10
1分钟前
TKTK发布了新的文献求助30
1分钟前
花泽秀完成签到,获得积分10
1分钟前
1分钟前
TKTK完成签到,获得积分10
1分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847567
求助须知:如何正确求助?哪些是违规求助? 6227695
关于积分的说明 15620595
捐赠科研通 4964265
什么是DOI,文献DOI怎么找? 2676537
邀请新用户注册赠送积分活动 1621054
关于科研通互助平台的介绍 1576998