Large Language Models Trained on Equipment Maintenance Text

计算机科学 词汇分析 词汇 术语 人工智能 自然语言处理 领域(数学分析) 聚类分析 自然语言 变压器 情报检索 语言学 数学分析 哲学 物理 数学 量子力学 电压
作者
P Abijith,Piyush Patidar,G. J. Nair,R. V. R. Pandya
标识
DOI:10.2118/216336-ms
摘要

Abstract Work orders, equipment information, technical records and best practices documents contain within them a wealth of insights related to Equipment Maintenance which can be unlocked with Natural Language Processing tasks like classification, clustering, named entity recognition or part of speech tagging. But obtaining large enough labelled data sets in Equipment Maintenance domain manually is prohibitive and very expensive. This lack of labeled Equipment Maintenance data can be overcome with Large Language Models (LLMs) such as GPT-3, BERT that are pretrained transformer networks, considered state-of-the-art when it comes to Natural Language Processing (NLP) tasks. However, the vocabulary understood by these LLMs are mostly from English Language and need to be fine-tuned to understand industry and organization specific vocabulary and acronyms. This paper explores the potential of a domain specific LLM model for oil and gas industries. Data that are of good quality and that provide a comprehensive overview of industry are collected. This corpus of text contains documents like work orders, equipment data and technical documents. A custom tokenizer is trained on this data to identify domain specific terminology. A comparative study is done with other off-the-shelf tokenizers: BERT and RoBERTa, to compare the effectiveness of the tokenization. With millions of work orders and equipment documents, training pipelines had to parallelized so that training can occur on multiple GPUs. A comprehensive study of multiple training methods is done in this paper. Model and tokenizer developed were packaged and archived to be consumed in machine learning pipelines to specific use-cases across the organization. For an organization adopting digital transformation, the availability of an organization specific LLM is an enabler to extract insights from millions of documents containing free text. The applicability of such models spans across multiple disciplines like Maintenance, Reliability, Safety etc. and streamlines the development of highly accurate and robust text analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hmzh发布了新的文献求助10
1秒前
可可完成签到,获得积分10
1秒前
3秒前
梅残风暖发布了新的文献求助10
4秒前
5秒前
慕青应助子车半烟采纳,获得10
6秒前
木偶发布了新的文献求助10
6秒前
tongbuxiang完成签到,获得积分20
7秒前
8秒前
Zsl121完成签到,获得积分10
9秒前
10秒前
安小象发布了新的文献求助10
10秒前
乐乐应助欢呼忆丹采纳,获得10
10秒前
11秒前
11秒前
13秒前
我爱科研发布了新的文献求助10
13秒前
liuwei发布了新的文献求助10
14秒前
14秒前
天天快乐应助天降采纳,获得10
15秒前
梨梨发布了新的文献求助10
16秒前
大模型应助huvy采纳,获得10
17秒前
17秒前
无花果应助灯火采纳,获得10
22秒前
22秒前
22秒前
bosslin完成签到,获得积分10
22秒前
晓旭完成签到 ,获得积分10
24秒前
魔幻的雪碧完成签到,获得积分20
24秒前
Akim应助粗暴的遥采纳,获得10
25秒前
syy发布了新的文献求助10
28秒前
请叫我鬼才完成签到,获得积分10
28秒前
29秒前
yi完成签到 ,获得积分10
31秒前
易不毛完成签到,获得积分10
31秒前
31秒前
33秒前
lt0217发布了新的文献求助10
36秒前
corazon完成签到,获得积分10
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141416
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802733
捐赠科研通 2448629
什么是DOI,文献DOI怎么找? 1302677
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237